Skip to main content

Advertisement

Log in

Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Sepsis is a serious medical condition that can lead to multi-organ failure and shock, and it is associated with increased mortality. Acute kidney injury (AKI) is a frequent complication of sepsis in critically ill patients, and often requires renal replacement therapy. The pathophysiology of AKI in sepsis has not yet been fully defined. In the past, classic theories were mainly focused on systemic hemodynamic derangements, underscoring the key role of whole kidney hypoperfusion due to reduced renal blood flow. However, a growing body of experimental and clinical evidence now shows that, at least in the early phase of sepsis-associated AKI, renal blood flow is normal, or even increased. This could suggest a dissociation between renal blood flow and kidney function. In addition, the scant data available from kidney biopsies in human studies do not support diffuse acute tubular necrosis as the predominant lesion. Instead, increasing importance is now attributed to kidney damage resulting from a complex interaction between immunologic mechanisms, inflammatory cascade activation, and deranged coagulation pathways, leading to microvascular dysfunction, endothelial damage, leukocyte/platelet activation with the formation of micro-thrombi, epithelial tubular cell injury and dysfunction. Moreover, the same processes, through maladaptive responses leading to fibrosis acting from the very beginning, may set the stage for progression to chronic kidney disease in survivors from sepsis-associated AKI episodes. The aim of this narrative review is to summarize and discuss the latest evidence on the pathophysiological mechanisms involved in septic AKI, based on the most recent data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singer M, Deutschman CS et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 23 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rhodes A, Evans LE et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45(3):486–552

    Article  PubMed  Google Scholar 

  3. Mehta RL, Kellum JA, Shah SV et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:31

    Article  Google Scholar 

  4. Bouchard J, Acharya A et al (2015) A Prospective international multicenter study of AKI in the intensive care unit. Clin J Am Soc Nephrol 7;10(8):1324–1331

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lameire NH, Bagga A, Cruz D et al (2013) Acute kidney injury: an increasing global concern. Lancet 13:170–179

    Article  Google Scholar 

  6. Wald R, McArthur E et al (2015) Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am J Kidney Dis 65(6):870–877

    Article  PubMed  Google Scholar 

  7. Bellomo R, Kellum JA, Ronco C et al (2017) Acute kidney injury in sepsis. Intensive Care Med 43(6):816–828

    Article  CAS  PubMed  Google Scholar 

  8. Dellepiane S, Marengo M, Cantaluppi V (2016) Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit Care 20:61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gómez H, Kellum JA, Ronco C (2017) Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 13(3):143–151

    Article  PubMed  PubMed Central  Google Scholar 

  10. Langenberg C, Bagshaw SM, May CN et al (2008) The histopathology of septic acute kidney injury: a systematic review. Crit Care 12:R38

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takasu O, Gaut JP, Watanabe E et al (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castellano G, Stasi A, Intini A et al. (2014) Endothelial dysfunction and renal fibrosis in endotoxemia-induced oliguric kidney injury: possible role of LPS-binding protein. Crit Care. 18:520–538

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lerolle N, Nochy D, Guérot E et al (2010) Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 36:471–478

    Article  PubMed  Google Scholar 

  14. Kosaka J, Lankadeva YR, May CN et al (2016) Histopathology of septic acute kidney injury: a systematic review of experimental data. Crit Care Med 44(9):e897-903

    Article  PubMed  Google Scholar 

  15. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:2063–2075

    Article  CAS  PubMed  Google Scholar 

  16. Antonucci E, Fiaccadori E et al (2014) Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care 29(4):500–511

    Article  PubMed  Google Scholar 

  17. Langenberg C, Bellomo R, May C et al (2005) Renal blood flow in sepsis. Crit Care 9:363–374

    Article  Google Scholar 

  18. Chua HR, Glassford N, Bellomo R (2012) Acute kidney injury after cardiac arrest. Resuscitation 83:721–727

    Article  PubMed  Google Scholar 

  19. Murugan R, Karajala-Subramanyam V, Lee M et al (2010) Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int 77:527–535

    Article  CAS  PubMed  Google Scholar 

  20. Bradley VE, Shier MR, Lucas CE et al (1976) Renal hemodynamic response to furosemide in septic and injured patients. Surgery 79:549–554

    CAS  PubMed  Google Scholar 

  21. Prowle JR, Molan MP, Hornsey E et al (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med 40(6):1768–1776

    Article  PubMed  Google Scholar 

  22. Badr KF, Kelley VE, Rennke HG et al (1986) Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure. Kidney Int 30(4):474–480

    Article  CAS  PubMed  Google Scholar 

  23. Ravikant T, Lucas CE (1977) Renal blood flow distribution in septic hyperdynamic pigs. J Surg Res 22:294–298

    Article  CAS  PubMed  Google Scholar 

  24. Langenberg C, Wan L, Egi M et al (2007) Renal blood flow and function during recovery from experimental septic acute kidney injury. Intensive Care Med 33:1614–1618

    Article  PubMed  Google Scholar 

  25. Maiden MJ, Otto S et al (2016) Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med 194(6):692–700

    Article  PubMed  Google Scholar 

  26. De Backer D, Donadello K, Taccone FS et al (2011) Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care 19:27–35

    Article  Google Scholar 

  27. Holthoff JH, Wang Z, Seely KA et al. (2012) Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 81:370–378

    Article  CAS  PubMed  Google Scholar 

  28. Dyson A, Bezemer R, Legrand M et al. (2011) Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 36:83–89

    Article  PubMed  Google Scholar 

  29. Legrand M, Bezemer R, Kandil A et al (2011) The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 37:1534–1542

    Article  PubMed  PubMed Central  Google Scholar 

  30. Losser MR, Forget AP, Payen D (2006) Nitric oxide involvement in the hemodynamic response to fluid resuscitation in endotoxic shock in rats. Crit Care Med 34:2426–2431

    Article  CAS  PubMed  Google Scholar 

  31. Heemskerk S, Masereeuw R, Russel FG et al (2009) Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 5:629–640

    Article  CAS  PubMed  Google Scholar 

  32. Langenberg C, Gobe G, Hood S et al (2014) Renal histopathology during experimental septic acute kidney injury and recovery. Crit Care Med 42:58–67

    Article  Google Scholar 

  33. Legrand M, Dupuis C, Simon C et al (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17(6):R278

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gustot T (2011) Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 17:153–159

    Article  PubMed  Google Scholar 

  35. Jo SK, Cha DR, Cho WY et al (2002) Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron 91(3):406–415

    Article  CAS  PubMed  Google Scholar 

  36. Lee SY, Lee YS, Choi HM et al (2012) Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 40:2997–2906

    Article  CAS  PubMed  Google Scholar 

  37. Mariano F, Cantaluppi V et al (2008) Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit Care 12(2):R42

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gomez H, Ince C, De Backer D et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to. injuryShock 41:3–11

    CAS  Google Scholar 

  39. Castoldi A, Braga TT, Correa-Costa M et al (2012) TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One 7(5)

  40. Knotek M, Rogachev B, Wang W et al (2001) Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59:2243–2249

    Article  CAS  PubMed  Google Scholar 

  41. Cunningham PN, Wang Y, Guo R et al (2004) Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172:2629–2635

    Article  CAS  PubMed  Google Scholar 

  42. Benes J, Chvojka J, Sykora R et al (2011) Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit Care 15:256–263

    Article  Google Scholar 

  43. Rodriguez-Wilhelmi P, Montes R, Matsukawa A et al (2003) Tumor necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock. J Lab Clin Med 141:257

    Article  CAS  PubMed  Google Scholar 

  44. Cantaluppi V, Gatti S et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82(4):412–427

    Article  CAS  PubMed  Google Scholar 

  45. Zafrani L, Gerotziafas G, Byrnes C et al (2012) Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med 185:744–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meziani F, Delabranche X, Asfar P et al. (2010) Bench-to-bedside review: circulating microparticles–a new player in sepsis?. Crit Care 14:236–242

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mortaza S, Martinez MC, Baron-Menguy C et al (2009) Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit Care Med 37:2045–2050

    Article  CAS  PubMed  Google Scholar 

  48. Zafrani L, Ince C, Yuen PS (2013) Microparticles during sepsis: target, canary or cure? Intensive Care Med 39(10):1854–1856

    Article  PubMed  Google Scholar 

  49. Levi M, De Jonge E, Van der Poll T (2001) Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med 29(7 Suppl):S90-4

    PubMed  Google Scholar 

  50. Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13(1):34–45

    Article  CAS  PubMed  Google Scholar 

  51. Levi M, Van der Poll T (2005) Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med 15(7):254–259

    Article  CAS  PubMed  Google Scholar 

  52. Suárez-Álvarez B, Liapis H, Anders HJ (2016) Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. Lab Invest 96(4):378–390

    Article  PubMed  Google Scholar 

  53. Forni LG, Darmon M et al (2017) Renal recovery after acute kidney injury. Intensive Care Med 43(6):855–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sawhney S, Marks A et al (2017) Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury. Kidney Int 92(2):440–452

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rabb H, Griffin MD et al (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27(2):371–379

    Article  CAS  PubMed  Google Scholar 

  56. Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30(4):461–475

    Article  CAS  PubMed  Google Scholar 

  57. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 11(5):264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deng W, Cho S et al (2014) Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc Natl Acad Sci USA 111(45):15987–15992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulkarni OP, Hartter I et al. (2014) Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol 25(5):978–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collino F, Bruno S et al (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J Am Soc Nephrol 26(10):2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Basile DP, Bonventre JV et al (2016) Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol 27(3):687–697

    Article  CAS  PubMed  Google Scholar 

  62. Zuk A, Bonventre JV (2016) Acute kidney injury. Annu Rev Med 67:293–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cianciolo Cosentino C, Skrypnyk NI et al. (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol. 24(6):943–953

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wynn TA (2010) Fibrosis under arrest. Nat Med 16(5):523–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72(2):151–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fiaccadori.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human or animals participant statements

This article does not contain any studies with animals or human participants performed by any of the authors.

Funding

This paper was partially funded by the Progetto Giovani Ricercatori Bando 2011–2012, funding number Prot. 2010J4458Z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fani, F., Regolisti, G., Delsante, M. et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 31, 351–359 (2018). https://doi.org/10.1007/s40620-017-0452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-017-0452-4

Keywords

Navigation