Table 2

Experiment 3.1.1—unbalanced training data without feature selection, sex performance disparities

Mean difference averaged over n=100Random forest classifierLogistic regression classifierSupport vector machineGaussian Naïve Bayes
Sex performance disparities (%)t-test
p value
Sex performance disparities (%)t-test
p value
Sex performance disparities (%)t-test
p value
Sex performance disparities (%)t-test
p Value
Accuracy2.960.00−2.850.01−2.980.02−2.720.02
FScore15.630.0015.860.004.140.0016.190.00
ROC_AUC*6.800.002.930.00−2.410.085.530.00
Precision5.250.00−4.870.003.410.00−3.130.05
Recall21.020.0024.070.002.580.0419.310.00
False negative rate−21.020.00−24.070.00−2.580.08−19.310.00
True negative rate−7.420.00−18.200.00−7.400.00−8.240.00
False positive rate7.420.0018.200.007.400.008.240.00
True positive rate21.020.0024.070.002.580.0419.310.00
  • *ROC AUC score is a measure of the separation between classes in a binary classifier, derived from the area under the ROC curve.