Average test set specificity with SD (at training set specificity of approximately 0.76) of different combinations of resampling procedure plus statistical/machine learning method, by racial/ethnic group
Asian | Black | Hispanic | White | Size of range | |
Blind—Logistic Regression | 0.91 (0.01) | 0.93 (0.01) | 0.94 (0.01) | 0.57 (0.01) | 0.38 (0.01) |
Blind—Naive Bayes | 0.91 (0.01) | 0.90 (0.01) | 0.91 (0.00) | 0.61 (0.01) | 0.30 (0.01) |
Blind—XGBoost | 0.96 (0.00) | 0.95 (0.01) | 0.95 (0.00) | 0.54 (0.02) | 0.42 (0.02) |
Blind—Random Forest | 0.97 (0.00) | 0.96 (0.00) | 0.96 (0.00) | 0.52 (0.04) | 0.45 (0.04) |
Separate—Logistic Regression | 0.66 (0.01) | 0.66 (0.02) | 0.74 (0.01) | 0.75 (0.00) | 0.10 (0.01) |
Separate—Naive Bayes | 0.72 (0.03) | 0.63 (0.08) | 0.78 (0.01) | 0.74 (0.01) | 0.15 (0.07) |
Separate—XGBoost | 0.71 (0.02) | 0.73 (0.06) | 0.76 (0.05) | 0.77 (0.01) | 0.10 (0.04) |
Separate—Random Forest | 0.61 (0.03) | 0.64 (0.03) | 0.70 (0.03) | 0.75 (0.02) | 0.15 (0.04) |
Equity—Logistic Regression | 0.79 (0.01) | 0.78 (0.01) | 0.76 (0.01) | 0.71 (0.01) | 0.08 (0.01) |
Equity—Naive Bayes | 0.81 (0.01) | 0.74 (0.01) | 0.76 (0.02) | 0.71 (0.02) | 0.10 (0.01) |
Equity—XGBoost | 0.81 (0.01) | 0.80 (0.02) | 0.72 (0.01) | 0.65 (0.01) | 0.17 (0.01) |
Equity—Random Forest | 0.70 (0.06) | 0.65 (0.03) | 0.66 (0.04) | 0.61 (0.06) | 0.10 (0.02) |
For each column and each resampling method, boldface indicates the top performing method(s).