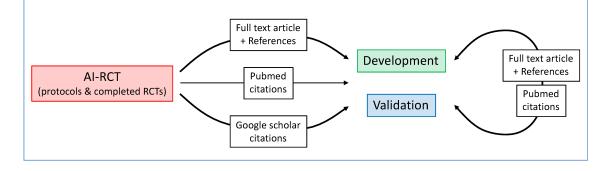
SUPPLEMENTARY MATERIAL

Supplementary Box: Search algorithm in Pubmed.

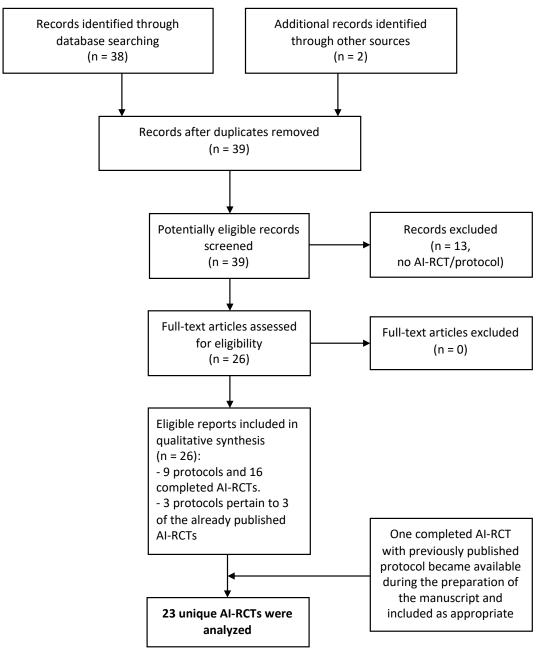
Supplementary Figure 1: Study-selection flowchart of AI-RCTs (protocols and published reports).

Supplementary Table 1: General characteristics of published protocols and completed RCTs evaluating artificial intelligence tools. Studies are ordered by year of publication and also grouped based on the indexed AI tool.


Supplementary Table 2: Information related to data management and assessed outcome(s).

Supplementary Table 3: Risk of Bias assessment for each AI-RCT by using the revised Cochrane risk-of-bias tool for randomized trials Risk of Bias (RoB) 2 (Sterne J et al. BMJ. 2019).

Supplementary Table 4: Summary of peer-reviewed studies in which the indexed AI tool was developed and externally validated. Studies are ordered according to the time of the corresponding AI-RCT protocol/report publication and grouped by the indexed AI tool.


Supplementary Box: Search algorithm in Pubmed and strategies for identification of peer reviewed studies of development and validation of AI tools evaluated in protocols/completed AI-RCTs.

- (artificial intelligence*[tiab] OR machine learning[tiab] OR neural network*[tiab] OR deep learning[tiab] OR cognitive computing[tiab] OR computer vision[tiab] OR natural language processing[tiab])
- 2. (random*[tiab] OR protocol*[tiab] OR study design*[tiab])
- 3. 1 and 2
- 4. Limit 3 to yr = 2000-nowadays

Supplementary Figure 1: Study-selection flowchart of AI-RCTs (protocols and published

reports).

Supplementary Table 1: General characteristics of published protocols and completed RCTs evaluating artificial intelligence tools. Studies are ordered by year of publication and also grouped based on the specific AI tool.

First author, year of pub- lication	Type of report	Geo- graphic area / Trial's sites / N. arms	Level of ran- domi- zation	Power calcula- tions	Sample size	Experi- mental AI- based inter- vention	Control intervention	Medical condition	Recruit- ment pe- riod	Funding source	Follow-up duration	Access to code
El-Solh A. et al., 2009 ²⁰	AI-RCT	North America / Single cen- ter / 2	Patients	Power 80%, type I error of 5% as- suming 20% re- duction in time to optimal CPAP	115	Artificial neu- ral network- guided con- tinuous posi- tive airway pressure ti- tration	Conventional continuous positive air- way pressure titration	Obstructive sleep apnea	Not re- ported	None re- ported	1 month	No
Martin C, et al, 2012 ²¹	AI-RCT	Europe / Multicenter / 2	Patients	Not appli- cable	214	Patient jour- ney system: machine learning and ruled-based algorithms to analyze an- swers to questions on health status	Standard of care	Older pa- tients with chronic ill- ness	Novem- ber 2010 to De- cember 2011	None re- ported	Diverse across indi- viduals	No
Zeevi D., et al. 2015 ²²	AI-RCT	Other / Multicenter / 2	Patients	Not appli- cable	100	Machine- learning al- gorithm to predict per- sonalized postprandial glycemic re- sponse to real-life meals	Clinical ex- perts	Healthy and predia- betic indi- viduals	Not re- ported	None re- ported	2 weeks	No

Piette J., et al. 2016 ²³	Proto- col	North America / Multicenter / 2	Patients	Power 90%, type I error (1- sided) of 2.5% to detect noninferi- ority within a margin of 2 points (SD 4.5)	320	Artificial in- telligence based cogni- tive behav- ioral therapy	Standard tel- ephone cog- nitive behav- ioral therapy	Patients with chronic low back pain	Begin in the fall of 2016	Non-in- dustry re- lated	6 months	No
Sadasivam R., et al. 2016 ²⁴	AI-RCT	North America / Multicenter / 2	Patients	Not appli- cable	120	Machine learning computer- tailored health com- munication system	Standard rule-based computer- tailored health com- munication system	Current smokers	October 2014 to January 2015	Non-in- dustry re- lated	1 month	No
Shimabukuro D., et al. 2017 ²⁵	AI-RCT	North America / Single cen- ter / 2	Patients	Power 80%, type I error of 5% to de- tect a re- duction of 1.5 days in hospi- tal length of stay	142	Machine learning al- gorithm for severe sepsis detection	Standard electronic health rec- ord-based se- vere sepsis detector	Patients ad- mitted to intensive care unit	Decem- ber 2016 to Febru- ary 2017	Non-in- dustry re- lated	Until hospi- tal dis- charge	No

Fulmer R., et al. 2018 ²⁶	AI-RCT	North America / Multicenter / 2	Patients	Not appli- cable	75	Integrative psychological artificial in- telligence chatbot tool (Tess)	Information- only control group re- ceived an electronic link to the NIMH's eBook on de- pression among col- lege students	College stu- dents at risk of de- pression and anxiety	Not re- ported	None re- ported	2 and 4 weeks	Νο
Popp C., etal. 2019 ²⁷	Proto- col	North America / Single cen- ter / 2	Patients	Power 80%, type I error of 5% to de- tect 2% differ- ence in weight loss	200	Personalized dietary inter- vention based on es- timation of glycemic re- sponse to meal by ma- chine learn- ing	Low fat diet	Overweight adults with pre-diabe- tes and type 2 dia- betes melli- tus	January 2018 to Decem- ber 2019	Non-in- dustry re- lated	12 months	No
Wang P., et al. 2019 ²⁸	AI-RCT	Asia / Sin- gle center / 2	Patients	Power 80%, type I error of 5% to de- tect 10% differ- ence in adenoma detection rate	1130	Colonoscopy with an auto- matic real- time polyp detection system based on deep learning	Standard di- agnostic co- lonoscopy	Patients re- ferred to colonos- copy	Septem- ber 2017 to Febru- ary 2018	None re- ported	Real-time automatic polyp de- tection	No

Wu L., et al. 2019 ²⁹	AI-RCT	Asia / Sin- gle center / 2	Patients	Power 90%, type I error of 5% to de- tect 0.1 differ- ence in blind spot rate de- tection (superi- ority margin 0.05)	324	Artificial in- telligence (WISENSE) assisted esophagogas- troduodenos- copy	Unassisted esophagogas- troduodenos- copy	Patients undergoing esoph- agogastro- duodenos- copy	August 2018 to October 2018	Non-in- dustry re- lated	None	No
0ka R., et al. 2019 ³⁰	Proto- col	Asia / Mul- ticenter / 2	Patients	Power 80%, type I error of 5% to de- tect 0.3% mean change in HbA1c level (non-in- feriority margin 0.2%)	100	Artificial in- telligence supported nutrition therapy	Human nutri- tion therapy	Patients with type 2 diabetes mellitus mainly con- trolled with diet	April 2018 to April 2020	Non-in- dustry re- lated	12 months	No
Lin H., et al. 2019 ³¹	AI-RCT	Asia / Mul- ticenter / 2	Patients	Power 80%, type I error of 5% to de- tect 5% differ- ence in diagnos- tic accu- racy	350	Artificial in- telligence based diag- nosis and treatment recommen- dation	Opthalmolo- gist based di- agnosis and treatment	Pediatric patients (<14 years) without known cat- aract	August 2017 to May 2018	Non-in- dustry re- lated	Not appli- cable	No

Wang P., et al. 2020 ³²	AI-RCT	Asia / Sin- gle center / 2	Patients	Power 80%, type I error of 5% to de- tect 10% increase in ade- noma de- tection rate	1046	Computer aided colon- oscopy using artificial in- telligence	Unassisted colonoscopy with sham control sys- tem (artificial intelligence model with intentional lower sensi- tivity and specificity)	Patients undergoing colonos- copy	Septem- ber 2018 to Janu- ary 2019	None	Real-time	No
Chen D., et al. 2020 ³³	AI-RCT	Asia / Sin- gle center / 3	Patients	Power 90%, 2- sided al- pha of .0167 (type I er- ror 1.67%); based on pilot data	437	Sedated (1) or unsedated (2) esoph- agogastrodu- odenoscopy or unsedated ultrathin transoral en- doscopy (3) with artificial intelligence assistance	Sedated (1) or unsedated (2) esoph- agogastrodu- odenoscopy or unsedated ultrathin transoral en- doscopy (3) without arti- ficial intelli- gence assis- tance	Patients undergoing esoph- agogastro- duodenos- copy	January 2019 to February 2019	None re- ported	None	No
Gong D., et al. 2020 ³⁴	AI-RCT	Asia / Sin- gle center / 2	Patients	Power 80%, type I error of 5% to de- tect 8% increase in ade- noma de- tection rate	704	Artificial in- telligence (deep neural networks and perceptual hash algo- rithms) en- hanced co- lonoscopy	Unassisted colonoscopy	Patients undergoing colonos- copy	June 2019 to Septem- ber 2019	Non-in- dustry re- lated	Diverse across indi- viduals, every 4 weeks until September 6th, 2019; median 18 days	No

Wijnberge M., et al. 2020 ^{35,36}	Proto- col / AI- RCT	Europe / Single cen- ter / 2	Patients	Power 80%, type I error of 5% to de- tect 75% reduction of hypo- tension in terms of depth and duration (time- weighted average of 0.38 +/- 0.51)	68	Artificial in- telligence powered early hypo- tension de- tection	Standard of care	Patients undergoing elective non-cardiac surgery un- der general anesthesia requiring arterial line	May 2018 to March 2019	Industry related	Periopera- tive	No
Schneck E., et al. 2020 ³⁷	AI-RCT	Europe / Single cen- ter / 2	Patients	Not appli- cable	50	Artificial in- telligence guided hypo- tension man- agement	Standard of care	Adult pa- tients un- dergoing total hip ar- throplasty	July 2017 to August 2018	Industry related	Periopera- tive	No
Maheshwari K, et al. 2020 ^{38,39}	Proto- col / AI- RCT	North America / Multicenter / 2	Patients	Power 80%, type I error of 5% to de- tect 20% reduction of hypo- tension (AUC- MAP <65mmH g)	214	Artificial in- telligence guided hypo- tension man- agement	Standard of care	Adult pa- tients (>44 years) un- dergoing elective non-cardiac surgery un- der general anesthesia requiring arterial line	July 2018 to April 2019	Industry related	30 days	No
Auloge P., et al. 2020 ⁴⁰	AI-RCT	Europe / Single cen- ter / 2	Patients	Power 80%, type I error of 5% to de- tect 2.0 +/- 1.5mm differ- ence in trocar	20	Augmented reality/artifi- cial intelli- gence guided trocar inser- tion	Fluoroscopy guided trocar insertion	Patients undergoing single-level vertebro- plasty	January 2018 to April 2018	None	Real-time	No

				place- ment ac- curacy								
Wong C., et al. 2020 ⁴¹	Proto- col	Asia / Mul- ticenter / 2	Patients	Sample size will be deter- mined based on the result from the phase I run-in pe- riod in- volving approxi- mately 100 sub- jects	200- 1000	Artificial in- telligence powered re- mote physio- logical moni- toring	Self tempera- ture monitor- ing	Asympto- matic sub- jects with COVID-19 exposure	Not re- ported	None re- ported	14 days	No
Aguilera A., et al. 2020 ⁴²	Proto- col	North America / Multicenter / 3	Patients	Power 80% to detect mean in- crease of 1250 steps	276	Adaptive text messages us- ing artificial intelligence (reinforce- ment learn- ing)	Non-adaptive text mes- sages (ran- dom)	Diabetes and depres- sion	Not re- ported	Non-in- dustry re- lated	6 months	No
Hill N, et al. 2020 ⁴³	Proto- col	Europe / Multicenter / 2	Patients	Power 88.5%, type I er- ror of 5% to detect 1.7% dif- ference in atrial fi- brillation diagnosis rate	18000	Artificial in- telligence guided atrial fibrillation screening	Standard of care	Adult pa- tients (>30 years) without known atrial fibril- lation	First par- ticipant enrolled August 2019	Industry related	3 years	No

X., et al. 2021 ^{44,45}	Proto- col / AI- RCT	North America / Multicenter / 2	Clini- cians	Power 80% to increase low left ventricu- lar ejec- tion frac-	22641	Artificial in- telligence based ECG screening for left ventricu- lar ejection fraction	Standard of care	Patients without known LV- EF reduc- tion (<50%) re- ceiving ECG	August 2019 to March 2020 (pa- tients' re- cruitment period)	Non-in- dustry re- lated	90 days	Upon request
Yao				tion de- tection rate from		<50%		in a pri- mary care setting				
				2.4 to 3.45-				8				
				4.06%								

Supplementary Table 2: Information related to data management and assessed outcome(s).

First author, year of pub- lication	Data collec- tion method	Strategies dealing with missing data	Single or composite primary out- come	Primary out- come	Type of pri- mary out- come	Outcome ad- judication method	Primary out- come favors AI-tool
El-Solh A. et al., 2009 ²⁰	Not specified	Not specified	Single	Time of achiev- ing optimal continuous pos- itive airway pressure titra- tion	Continuous	Not specified	Yes
Martin C., et al., 2012 ²¹	Not specified	Not specified	Single	Unplanned emergency am- bulatory care sensitive ad- missions	Binary	Not specified	Yes
Zeevi D., et al. 2015 ²²	Not specified	Not specified	Single	Postprandial glycemic re- sponses	Continuous	Not specified	Yes
Piette J., et al. 2016 ²³	Dedicated personnel & Electronic health rec- ords	Multiple im- putation methods if >15% of a co- variate is missing	Single	24-item Roland Morris Disabil- ity Question- naire (RMDQ)	Categorical	Not specified	Not applicable
Sadasivam R., et al. 2016 ²⁴	Not specified	Not specified	Single	Smoking cessa- tion	Binary	Not specified	Yes
Shimabukuro D., et al. 2017 ²⁵	Electronic health rec- ords	Not specified	Single	Average hospi- tal length of stay	Continuous	Not specified	Yes
Fulmer R., et al. 2018 ²⁶	Dedicated personnel & Electronic health rec- ords	Not specified	Single	Self-report tools (PHQ-9, GAD-7, PANAS) for symptoms	Continuous	Not specified	Yes

				of depression and anxiety			
Popp C., et al. 2019 ²⁷	Dedicated personnel	Identification of predictors for missing data during preliminary analysis phase, subse- quently in- cluded as co- variates un- der assump- tion of miss- ing at random	Single	Body weight loss	Continuous	Not applica- ble	Not applicable
Wang P., et al. 2019 ²⁸	Not specified	Not specified	Single	Adenoma de- tection rate	Binary	Not specified	Yes
Wu L., et al. 2019 ²⁹	Not applica- ble	Not specified	Single	Blind spot rate	Continuous	Not specified	Yes
Oka R., et al. 2019 ³⁰	Electronic health rec- ords	Use of mixed models	Single	Change in gly- cated hemoglo- bin levels	Continuous	Not applica- ble	Not applicable
Lin H., et al. 2019 ³¹	Not applica- ble	Not specified	Single	Diagnostic per- formance for childhood cata- ract	Binary	Diagnosis by cataract ex- perts	No
Wang P., et al. 2020 ³²	Dedicated personnel	Not specified	Single	Adenoma de- tection rate	Binary	Not specified	Yes
Chen D., et al. 2020 ³³	Not applica- ble	Not specified	Single	Blind spot rate	Continuous	Not specified	Yes
Gong D., et al. 2020 ³⁴	Not specified	Not specified	Single	Adenoma de- tection rate	Continuous	Not specified	Yes

Wijnberge M., et al. 2020 ^{35,36}	Dedicated personnel	Not specified	Single	Time-weighted average of hy- potension dur- ing surgery	Continuous	Not specified	Yes
Schneck E., et al. 2020 ³⁷	Dedicated personnel	Not specified	Single	Frequency and absolute and relative dura- tion of in- traoperative hypotension	Binary, con- tinuous	Not specified	Yes
Maheshwari K., et al. 2020 ^{38,39}	Dedicated personnel & Electronic health rec- ords	Not specified	Single	Time-weighted average of hy- potension dur- ing surgery	Continuous	Not specified	No
Auloge P., et al. 2020 ⁴⁰	Not applica- ble	Not specified	Single	Technical feasi- bility of trocar placement us- ing augmented reality/artificial intelligence guidance	Binary	Not specified	Not applicable (no compari- son for the pri- mary outcome, primary sec- ondary out- come (used for power calcula- tion) equi- poise)
Wong C., et al. 2020 ⁴¹	Dedicated personnel	Not specified	Single	Time to diagno- sis of corona- virus disease 19	Continuous	Not applica- ble	Not applicable
Aguilera A., et al. 2020 ⁴²	Dedicated personnel & Electronic health rec- ords	Full-infor- mation maxi- mum likeli- hood, includ- ing patients that have at least 1 month of data availa- ble	Single	Improvement in physical ac- tivity defined by daily step counts	Continuous	Not applica- ble	Not applicable

Hill N., et al. 2020 ⁴³	Electronic health rec- ords	Not specified	Single	Prevalence of diagnosed atrial fibrilla- tion	Continuous	Not specified	Not applicable
Yao X., et al. 2021 ^{44,45}	Electronic health rec- ords	Not specified	Single	Newly discov- ered left ven- tricular ejection fraction <50%	Binary	Not specified	Yes

Supplementary Table 3: Risk of Bias assessment for each AI-RCT by using the revised Cochrane risk-of-bias tool for randomized trials Risk of Bias (RoB) 2 (Sterne J et al. BMJ. 2019).

First author, year of publi- cation	1. Bias arising from the randomi- sation process	2. Bias due to devia- tions from in- tended interven- tions	3. Bias due to missing outcome data	4. Bias in measure- ment of the out- come	5. Bias in selection of the re- ported result	Overall
El-Sohl A. et al., 2009 [19259717]	low risk of bias	some con- cerns	low risk of bias	low risk of bias	some con- cerns	some concerns
Marti C., et al., 2012 [22816797]	high risk of bias	some con- cerns	high risk of bias	high risk of bias	some con- cerns	high risk of bias
Zeevi D., et al. 2015 [26590418]	some con- cerns	high risk of bias	high risk of bias	low risk of bias	some con- cerns	high risk of bias
Sadasivam R., et al. 2016 [27826134]	low risk of bias	some con- cerns	high risk of bias	low risk of bias	some con- cerns	high risk of bias
Shimabukuro D., et al. 2017 [29435343]	low risk of bias	some con- cerns	low risk of bias	low risk of bias	some con- cerns	some concerns
Fulmer R., et al. 2018 [30545815]	low risk of bias	high risk of bias	low risk of bias	high risk of bias	high risk of bias	high risk of bias
Wang P., et al. 2019 [30814121]	low risk of bias	high risk of bias	low risk of bias	high risk of bias	some con- cerns	high risk of bias
Wu L., et al. 2019 [30858305]	low risk of bias	high risk of bias	low risk of bias	high risk of bias	low risk of bias	high risk of bias
Lin H., et al. 2019 [31143882]	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias
Wang P., et al. 2020 [31981517]	low risk of bias	high risk of bias	low risk of bias	high risk of bias	low risk of bias	high risk of bias
Chen D., et al. 2020 [31541626]	low risk of bias	some con- cerns	low risk of bias	low risk of bias	low risk of bias	some concerns

Gong D., et al. 2020 [31981518]	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias
Wijnberge M., et al. 2020 [31601239; 32065827]	low risk of bias	high risk of bias	low risk of bias	low risk of bias	low risk of bias	high risk of bias
Schneck E., et al. 2020 [31784852]	low risk of bias	some con- cerns	low risk of bias	low risk of bias	low risk of bias	some concerns
Maheshwari K., et al. 2020 [31053082; 32960954]	low risk of bias	some con- cerns	low risk of bias	low risk of bias	low risk of bias	some concerns
Auloge P., et al. 2020 [31270676]	some con- cerns	some con- cerns	low risk of bias	high risk of bias	some con- cerns	high risk of bias
Yao X., et al. 2019 [31710842]	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias	low risk of bias

Supplementary Table 4: Summary of peer-reviewed studies in which the indexed AI-tool was developed and externally validated. Studies are ordered according to the time of the corresponding AI-RCT protocol/report publication and grouped by the indexed AI tool.

	Dev	elopment st		External validation studies				
Protocol/com- pleted AI-RCT	First author, year of publication	Geo- graphic area	Sample size	Recruit- ment pe- riod	First author, year of publication	Geo- graphic area	Sample size	Re- cruitement period
El-Solh A. et al., 2009 ²⁰	El-Sohl A. et al., 2007 ⁵¹	North America	311	Jan 2005 to Aug 2005	-	-	-	-
Martin C., et al., 2012 ²¹	-	-	-	-	-	-	-	-
Zeevi D., et al. 2015 ²²	Zeevi D., et al. 2015 ²²	Other	800	not re- ported	Zeevi D., et al. 2015 ²²	Other	100	not re- ported
					Mendes-Soares H., et al. 2019 ^{s2}	North America	327	Oct 2016 to Dec 2017
Piette J., et al. 2016 ²³	-	-	-	-	-	-	-	-
Sadasivam R., et al. 2016 ²⁴	-	-	-	-	Faro J., et al. 2020 ^{s3}	North America	55	Apr 2017 to Nov 2017
Shimabukuro D., et al. 2017 ²⁵	Calvert J., et al. 2016 ^{s4}	North America	1394	2001 to 2008	McCoy A., et al. 2017 ^{\$5}	North America	1328	Feb 2017 to Apr 2017
					Mao Q., et al. 2018 ^{s6}	North America	90353	Jun 2011 to Mar 2016
Fulmer R., et al. 2018 ²⁶	-	-	-	-	Stephens T., et al. 2019 ^{s7}	North America	23	not re- ported
					Green E., et al. 2020 ⁵⁸	Other	41	not re- ported

Popp C., et al. 2019 ²⁷	Zeevi D., et al. 2015 ²²	Other	800	not re- ported	Zeevi D., et al. 2015 ²²	Other	100	not re- ported
					Mendes-Soares H., et al. 2019 ^{s2}	North America	327	Oct 2016 to Dec 2017
Wang P., et al. 2019 ²⁸	Wang P., et al. 2018 ⁵⁹	Asia	1290	Jan to Feb 2018	Wang P., et al. 2018 ^{s9}	Asia	1138	Jan to Feb 2018
					Zhou G., et al. 2020 ⁵¹⁰	Asia	210	Jul 2015 to Jan 2019
					Wang P., et al. 2020 ⁵¹¹	Asia	367	Jun to Sep 2019
					Becq A., et al. 2020 ^{S12}	Not re- ported	50	Not re- ported
Wu L., et al. 2019 ²⁹	Wu L., et al. 2019 ²⁹	Asia	>3000	Aug 2018 to Oct 2018	-	-	-	-
Oka R., et al. 2019 ³⁰	-	-	-	-	-	-	-	-
Lin H., et al. 2019 ³¹	Long E., et al. 2017 ^{S13}	Asia	886	Not re- ported	Long E., et al. 2017 ⁵¹³	Asia	57	Jan 2012 to Mar 2016
Wang P., et al. 2020 ³²	Wang P., et al. 2018 ⁵⁹	Asia	1290	Jan to Feb 2018	Wang P., et al. 2018 ^{s9}	Asia	1138	Jan to Feb 2018
					Zhou G., et al. 2020 ⁵¹⁰	Asia	210	Jul 2015 to Jan 2019
					Wang P., et al. 2020 ⁵¹¹	Asia	367	Jun to Sep 2019
					Becq A., et al. 2020 ⁵¹²	Not re- ported	50	Not re- ported
Chen D., et al. 2020 ³³	Wu L., et al. 2019 ²⁹	Asia	>3000	Aug 2018 to Oct 2018	-	-	-	-
Gong D., et al. 2020 ³⁴	Gong D., et al. 2020 ³⁴	Asia	>5000	Not re- ported	-	-	-	-

Wijnberge M., et al. 2020 ³⁶	Hatib F., et al. 2018 ⁵¹⁴	North America	1334	2005 to 2014	Hatib F., et al. 2018 ⁵¹⁴	North America	204	Dec 2015 to Jan 2017
					Davies S., et al. ^{S15}	Europe	255	Nov 2016 to Dec 2017
Maheshwari K., et al. 2020 ³⁹	Hatib F., et al. 2018 ⁵¹⁴	North America	1334	2005 to 2014	Hatib F., et al. 2018 ⁵¹⁴	North America	204	Dec 2015 to Jan 2017
					Davies S., et al. ^{S15}	Europe	255	Nov 2016 to Dec 2017
Schneck E., et al. 2020 ³⁷	Hatib F., et al. 2018 ⁵¹⁴	North America	1334	2005 to 2014	Hatib F., et al. 2018 ⁵¹⁴	North America	204	Dec 2015 to Jan 2017
					Davies S., et al. ^{S15}	Europe	255	Nov 2016 to Dec 2017
Auloge P., et al. 202040	-	-	-	-	-	-	-	-
Wong C., et al. 202041	-	-	-	-	-	-	-	-
Aguilera A., et al. 202042	-	-	-	-	-	-	-	-
Hill N., et al. 202043	Hill N., et al. 2019 ⁵¹⁶	Europe	299483 7	Jan 2006 to Dec 2016	Sekelj S., et al. 2020 ⁵¹⁷	Europe	604135	Jan 2006 to Dec 2013
Yao X., et al. 2021 ^{44,45}	Attia ZI., et al. 2019 ⁵¹⁸	North America	44959	Jan 1994 - Feb 2017	Attia ZI., et al. 2019 ⁵¹⁹	North America	6008	Sep 2018
					Adedinsewo D., et al. 2020 ^{s20}	North America	1606	May 2018 to Feb 2019
					Attia ZI., et al. 2020 ⁵²¹	North America	27	Not re- ported

Supplementary references reported in Supplementary Table 4:

S1. El-Solh., et al. Predicting effective continuous positive airway pressure in sleep apnea using an artificial neural network. Sleep Med. 2007. [PMID: 17512788]
S2. Mendes-Soares H., et al. Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA Netw. Open. 2019. [PMID: 30735238]

S3. Faro J., et al. Comparison of a Collective Intelligence Tailored Messaging System on Smoking Cessation Between African American and White People Who Smoke: Quasi-Experimental Design. JMIR Mhealth Uhealth. 2020. [PMID: 32338619]

S4. Calvert JS., et al. A computational approach to early sepsis detection. Comput Biol Med. 2016. [PMID: 27208704]

S5. McCoy A., et al. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2017. [PMID: 29450295]

S6. Mao Q., et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018. [PMID: 29374661]

S7. Stephens T., et al. Feasibility of pediatric obesity and prediabetes treatment support through Tess, the AI behavioral coaching chatbot. Transl Behav Med. 2019. [PMID: 31094445]

S8. Green E., et al. Expanding Access to Perinatal Depression Treatment in Kenya Through Automated Psychological Support: Development and Usability Study. JMIR Form Res. 2020. [PMID: 33016883]

S9. Wang P., et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018. [PMID: 31015647] **S10.** Zhou G., et al. Computer aided detection for laterally spreading tumors and sessile serrated adenomas during colonoscopy. PLoS One. 2020. [PMID: 32315365]

S11. Wang P., et al. Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study. Gastroenterology. 2020. [PMID: 32562721]

S12. Becg A., et al. Effectiveness of a Deep-learning Polyp Detection System in Prospectively Collected Colonoscopy Videos With Variable Bowel Preparation Quality. J Clin Gastroenterol. 2020. [PMID: 31789758]

\$13. Long E., et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering. 2017. [doi.org/10.1038/s41551-016-0024]

S14. Hatib F., et al. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology. 2018. [PMID: 29894315]

S15. Davies S., et al. Ability of an Arterial Waveform Analysis-Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth Analg. 2020. [PMID: 30896602]

S16. Hill NR., et al. Predicting atrial fibrillation in primary care using machine learning. PLoS One. 2019. [PMID: 31675367]

S17. Sekelj S., et al. Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study. Eur J Prev Cardiol. 2020. [PMID: 32787456]

S18. Attia Z., et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019. [PMID: 30617318]

S19. Attia Z., et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2019. [PMID: 30821035]

S20. Adedinsewo D., et al. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circ Arrhythm Electrophysiol. 2020. [PMID: 32986471]

S21. Attia Z., et al. Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series. Mayo Clin Proc. 2020. [PMID: 33153634]