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Table 1 - Predictive ability of Existing Scoring Systems for Covid-19 in-hospital mortality, sorted by AUROC (n=40)
Abbreviations: SBP = Systolic blood pressure, RR = respiratory rate, DM = diabetes mellitus, LoC = level of consciousness,
GCS = Glasgow Coma Scale, HR = heart rate, HTN = hypertension, TIA = transient ischaemic attack, MABP = mean
arterial blood pressure, IHD = ischaemic heart disease, COPD = chronic obstructive pulmonary disease, HCT =
haematocrit, SpO2 = oxygen saturation, AF = atrial fibrillation, CVD = cardiovascular disease, CHF = congestive heart
failure, CAP = community acquired pneumonia
Authors of | Prognostic Intended Variables used Number of | AUROC
paper System application variables
evaluating included
system
Wang, Let | APACHE Il Scoring system for APS (Acute physiology 12 0.9370
al’ (acute use in intensive care | score), Temp, MABP, HR,
physiology | units to provide gross RR, PaO2 or aPO2,
Zou, g( et | and chronic | estimate of mortality arterial pH or HCO3, 0.9660
al health risks serum Na, serum K,
evaluation II) serum creatinine, HCt,
WBCC, GCS, age,
chronic health evaluation
mEl Specific development Age, sex, presence of 13
(modified of a modified renal diseases,
Elixhauser Elixhauser Index neurological dis-orders,
Index) lymphoma, solid tumour
De Giorgi, with metastasis, IHD, 0918
Aetal CHD, coagulopathy, fluid '
and electrolyte disorders,
liver disease, weight loss,
metastatic cancer
SOFA Score for calculation Oxygenation index, 6
S.Liuetal* | (sequential of number and MABP, GCS, creatinine or 0.9150
organ severity of organ urine volume, bilirubin,
Wang, L et function dysfunction in six platelets
al’ assessment) organ systems 0.9260
(respiratory,
coagulatory, liver,
Zoué|g( o cardiovascular, renal, 0.8760
and neurologic)
D. Jietal RAS Assessment for RR, resting SpO2, 4 0.9000
(respiratory progression and Alveolar-arterial O2
assessment mortality in gradient, Minimal exercise
scoring) respiratory disease desaturation test
Wang, L et PSI Index to identify CAP Age, sex, residence, 20 0.9270
al' (pneumonia | patients at a low risk comorbidity and acute
X. Tang et severity of mortality who pneumonia-associated 0.8500
al® index) could safely be morbidity
C. Satici et treated as 0.9100
al’ outpatients
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Table 1 cont. part 2
F.Liuetal’ NEWS Tool for early RR, Sp0O2, Supplemental 0.8815
(National detection of in- oxygen, SBP,
Early hospital patient temperature, HR, AVPU
Warning deterioration score
Score)
X. Tang et al® A-DROP Age, Dehydration, SpO2 0.8700
Modified CURB-65 or MABP, Confusion, SBP
system for prediction
of mortality in
hospitalized patients
with CAP
C. Satici et al’ CClI Predicts survival in Age and Comorbidities 0.8630
(Charlson patients with multiple (MI, CHF, peripheral
Comorbidity | comorbidities, and is vascular disease,
Index) widely used as a cerebrovascular disease,
measure of total dementia, COPD, peptic
comorbidity burden ulcer disease, liver
disease, DM, hemiplegia,
moderate to severe CKD,
solid tumor, leukaemia,
lymphoma, AIDS)
H. Hu et alP’ REMS Predicts in-hospital HR, BP, RR, GCS, SpO2, 0.8330
(Rapid mortality in non- age
emergency surgical patients
medicine admitted to the ED
score)
H. Hu et al’ MEWS Tool for assessment HR, SBP, RR, body 0.6770
and early temperature, LoC
identification of
pneumonia
deterioration
P. Bradley et CURB-65 Scoring system Confusion, Urea, RR, BP, 0.7500
al' specific for CAP to Age 265
D. Ortiz et al"’ predict all-cause 0.7200
X. Tang et al’ mortality within 30 0.8500
Zou, X et al” days 0.8440
R. Gupta et al™ 0.7500
F.Liuetal® 0.7665
C. Satici et al™ 0.8800
P. Bradley et NEWS2 Disease agnostic RR, Sp02, air or oxygen, 0.6700
al' (National early warning tool systolic BP, HR, LoC,
Early used to trigger temperature
Warning escalation of care in
5 Score 2) the deteriorating
X. Tang et al patient, with high 0.8100
scores being
associated with death
or unanticipated
F.Liuetal intensive care unit 0.8797
(ICU) admission
within 24 hours
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Table 1 cont. part 3
P. Bradley et al™ qSOFA Tool for predicting Mental status, RR 0.6200
S. Liuetal® (quick mortality and ICU <22, SBP <100 0.7420
Wang, L et al’ sequential admission among patients 0.8860
Zou, X et al organ with suspected infection in 0.8760
F. Liuetal® function prehospital, emergency 0.6936
assessment) department and ward
settings
A. Halalau et al™ m- Risk score created from Same as 0.7000
CHA,D,VAS | CHA.D,VASc to improve CHA.D,VASc but
¢ (Modified predictive ability for with gender criteria
CHA,D,VAS COVID-19 mortality switched from female
C) to male (male sex is
reported by recent
studies to be an
important predictor of
mortality in COVID-
19 patients)
G. Cetinkal et al”* | CHA,D,VAS Risk score principally CHF, HTN, Age (65 0.6400
c used for estimating the to 74), DM,
risk of ischemic stroke in Vascular disease,
patients with AF and also Female gender, 2
predicts mortality in points for age 275
various CVD and history of TIA
and/or stroke
D. Ortiz et al"’ SMART- Assessing severity of SBP, multilobar CXR 0.5600
coP CAP (community acquired involvement,
pneumonia) confirmed by Albumin, RR, HR,
CXR Confusion, SpO2, pH
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Table 2: New COVID-19 in-hospital mortality prediction models, displaying the number of patients and number

of incorporated parameters, sorted by AUROC (n=37)

Author with scoring system

Liuetal.”

Qin et al.™®

17
I

Wang et a

Weng et al.™

Soto-Mota et al.™
Mei et al.?
Luo et al.”’
Luo et al.”®

Zhou et al.?®

Cheng et al.**

Laguna-Goya et al.”®
El-Solh et al.*® (Shang score)
Shang et al.**’

Mei et al.?®
El-Solh et al.”® (Chen score)

Fumagalli et al.*®

Gude-Sampedro et al.*’
Torres-Macho et al.”'
El-Solh et al.?® (Wang score)

Li et al.*
Hajifathalian et al.*® (7-day score)
Manocha et al.**
Hajifathalian et al.** (14-day score)

Tusha et al.*
Fernandez et al.*®
Caietal.”’
Nunez-Gil et al.*®
Varol et al.*

Mancilla-Galindo et al.*’

Altschul et al.”’

Gue et al.”

AUROC

0.9940
0.9920
0.9905
0.9750
0.9600
0.9600
0.9560
0.9550
0.9550
0.9400
0.9400
0.9200
0.9190
0.9120
0.9100
0.9000
0.8900
0.8830
0.8800
0.8700
0.8600
0.8340
0.8300
0.8130
0.8129
0.8070
0.8070
0.8020
0.8000
0.7980
0.7933

Number of Number of
patients incorporated
parameters
336 3

118
126
301
400
1088
739
1115
118
305
501
1634
1830
492
1634
516
10545
1968
1634
1008
265
1053
265
163
487
126
1021
383
83779
4711
316
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Table 2 cont part 2
Knight et al.*
Lorente-Ros et al.**
Shi et al.* (COVID-GRAM score)
El-Solh et al.?® (Yu-score)
|.%

Rodriguez-Nava et a

Shi et al.** (CALL-score)

0.7900
0.7900
0.7750
0.7700
0.7110
0.6400

35463
707
257
1634
313
257
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Table 3: Most common parameters incorporated into new prediction models of in-hospital mortality in

patients with COVID-19 (n=37)

Abbreviations: CRP = C-reactive protein, SpO2 = Peripheral capillary oxygen saturation

AUROC

Author with scoring
system
Liuetal.”

Qinetal.’™
|17

Wang et a

18
l.

Weng et a

Soto-Mota et al.™

Mei et al.?’

Luo et al.?’

Luo et al.?

Zhou et al.”®
Cheng et al.**
Laguna-Goya et al.*®

El-Solh et al.*® (Shang
score)

Shang et a
Mei et al.”®

El-Solh et al.%* (Chen
score)
Fumagalli et al.”®

327
l.

Gude-SamB)edro et
al®

Torres-Macho et al.*’

El-Solh et al.?® (Wang
score)
Li et al.*

Hajifathalian et a
(7-day score)
Manocha et al.**

33
l.

Hajifathalian et al.*®
(14-day score)
Tusha et al.®

Fernandez et al.*®

Cai etal.”’

Nunez-Gil et al.*®

Varol et al.®*

Mancilla-Galindo et
al.*
Altschul et al.*’

0.9940
0.9920
0.9905
0.9750
0.9600
0.9600
0.9560
0.9550
0.9550
0.9400
0.9400
0.9200

0.9190
0.9120
0.9100

0.9000
0.8900

0.8830
0.8800

0.8700
0.8600

0.8340
0.8300

0.8130
0.8129
0.8070
0.8070
0.8020
0.8000

0.7980

Lymphocyte
count

v
v
v

NENEUEN

D-dimer
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Table 3 cont. part 2
Gue et al.* 0.7933 v v
Knight et al.* 0.7900 v v v
Lorente-Ros et al.** 0.7900 v v v
Shi et al.** (COVID- 0.7750 v
GRAM score)
El-Solh et al.?® (Yu- 0.7700 N N4 v
score)
Rodriguez-Nava et 0.7110 N4
a|_46
Shi et al.* (CALL- 0.6400 v v
score)
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Table 4: studies examining the association of novel blood parameters with mortality in patients admitted to

hospital with COVID-19 (n=12)

Authors | Sample Category of Blood parameter(s) Proposed cut- Sensitivity %
size parameters shown to be associated offs for
with mortality (p<0.05) independently
associated
parameters
Fuetal * 355 Hepatic function | Cholestasis markers (ALP, | Outside of normal Not reported
markers y-GGT and TBA) range
Hypoproteinaemia
markers (albumin and
globulin)
Garcia et 639 arterial blood gas creatinine, D-dimer, Not reported Not reported
al.*® analyses, and lactate, potassium, P/F-
laboratory values ratio,alveolar-arterial
such as gradient
inflammatory,
coagulation,
renal, liver,
cardiac
Bellmann- 259 Presence of Presence of moderate- moderate-severe Not reported
Weiler et anaemia serious anaemia anaemia; defined
al.® subgroups (mild/ as haemoglobin
moderate/severe) <109 g/L
Liuetal™ | 1525 Inflammatory Procalcitonin PCT=0.05 ng/ml Not reported
biomarker
Wang et 605 Admission fasting FBG FBG =7.0 mmol/l Not reported
al.”' blood glucose
Singh et 276 Cardiac Elevated initial high - initial hs-TnT Not reported
al. * biomarker sensitivity cardiac above the median
troponin-T (hs-TnT) (=17 ng/L)
Fois et 119 complete blood Systemic inflammation >1835 SSI-55
al.® cell count (CBC)- index (SSl) x10° cells/L
derived
inflammation
indexes
Aloisio et 427 Range of serum Lactate dehydrogenase lactate Not reported
al.* biomarkers Albumin dehydrogenase:
>731 U/L
,albumin: 18 g/L
or lower
Foy et 1641 Complete blood red blood cell distribution elevated RDW Not reported
al.® count (CBC) width (RDW) was defined as
derived greater than
parameter 14.5%
Stefanini 397 Cardiac high-sensitivity cardiac 219.6 ng/L, BNP Not reported
etal.’® biomarkers troponin | (hs-Tnl), B-type | =100 pg/mL) hs-
natriuretic peptide (BNP) Tnl serum levels
Trabulus 336 Kidney function eGFR eGFR under 60 Not reported
etal”’ biomarker mL/min/1.73m?
Cao et 244 Cardiac serum high-sensitivity >20ng/L serum hs-cTnl -85.7
al.® biomarkers cardiac Troponin | (hs- hs-cTnl levels

cTnl)

Chu K, et al. BMJ Health Care Inform 2021; 28:€100389. doi: 10.1136/bmjhci-2021-100389



Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

placed on this supplemental material which has been supplied by the author(s)

BMJ Health Care Inform

Table 5: studies examining the association of imaging modalities with mortality in patients admitted to

hospital with COVID-19 (n=4)

Proposed cutoffs

Sensitivity %

Authors | Sample | Imaging Imaging features(s)
size modality shown to be for independently
and site associated with associated
mortality (p<0.05) parameters
Esposito 1394 Chest CT Enlarged main Enlargement (= 31 Not reported
et al.”® pulmonary artery mm)
diameter (MPAD)
Francone 130 Chest CT CT-based semi- CT score 218 Not reported
etal.® quantitative score of
pulmonary lobar
involvement (range 0-
25)
Lichter 120 Lung LUS severity score Baseline LUS LUS- 62
etal.® ultrasound (range 0-36) score > 18
(LUS)
Xu g:zt al. 703 Chest CT CT severity score CT severity score > Not reported
14

Chu K, et al. BMJ Health Care Inform 2021; 28:€100389. doi: 10.1136/bmjhci-2021-100389



Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

placed on this supplemental material which has been supplied by the author(s)

BMJ Health Care Inform

Table 6: Machine learning models that are used to predict mortality in patients admitted to hospital from COVID-
19, with the training set being the number of people used to create the model and the test set being the number
of people used when validating the model, sorted by highest AUROC. (n=12)

Author

Number of
incorporated
parameters

AUROC

Training
set

Test
set

Parameters looked at

An et al.®®

5

0.9630

7166

3071

age > 80, taking of acarbose, age > 70, taking of
metformin, and underlying cancer

Yuan et
al.®

0.9551

1479

573

gSOFA, CURB 65, CRB65

Booth et
al. ®

0.9300

318

80

CRP, blood urea nitrogen (BUN), serum calcium,
serum albumin, and lactic acid.

Yu et al.
66

32

0.9220

172

74

lactate dehydrogenase, a.hydroxybutyrate
dehydrogenase, bnp, urea nitrogen, hrcp |,
myoglobin,age, d dimer, lymphocyte, cystatin c,
igG, neutophils, albumin, creatinine kinase
isozyme, creatinine, % eosinophil RR, total
platelet, x blood glucose, eosinophil count,
platelet distribution width, average platelet
volume, hsc reactive protien, alkaline phosphate,
basophil count, thrombin time, x platelet
hematocrit, temperature, lipoprotien a, hbeab,
phospherous, aptt

Gao et al.
67

14

0.9186

2160

116

Consciousness, male sex, sputum, blood urea
nitrogen [BUN], respiratory rate [RR], D—dimer,
number of comorbidities, age, platelet count [PLT],
fever, albumin [ALB], SpO2, lymphocyte, and
chronic kidney disease

Bertsimas
et al. %

0.9019

2755

307

IL-2R, IL-6, IL-8, TNF-a, B cells, CD4+ T cells,
CD8+ T cells, NK cells

Abdulaal
et al.®®

22

0.9012

398

40

Consciousness, male sex, sputum, blood urea
nitrogen [BUN], respiratory rate [RR], D—dimer,
number of comorbidities, age, platelet count
[PLT], fever, albumin [ALB], SpO2, lymphocyte,
and chronic kidney disease

Hu et al.
70

0.8810

183

64

Consciousness, male sex, sputum, blood urea
nitrogen [BUN], respiratory rate [RR], D—dimer,
number of comorbidities, age, platelet count
[PLT], fever, albumin [ALB], SpO2, lymphocyte,
and chronic kidney disease

Pan et al.
71

0.8600

98

25

LYM%, PT, lactate dehydrogenase (LDH), total
bilirubin (T-Bil) , eosinophil percentage (EOS%),
creatinine (Cr), NEUT%, and ALB.
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Table 6 cont:

Age,Gender ,Length of stay , Admission type,
Admission Source ,Respiratory rate
Pulse, Diastolic blood pressure, Percutaneous
oxygen saturation, Systolic blood pressure
Temperature, Blood urea nitrogen , Serum
Creatinine, Platelet count, Serum chloride, Anion
gap, Serum sodium, Corrected WBC count, C-
reactive protein, Red blood cell count, Partial
pressure of carbon dioxide in arterial blood,
(PACO2), Partial pressure of oxygen in arterial
blood (PAQ2), Partial pressure of carbon dioxide
in venous blood (PVC02), Partial pressure of
Parchure oxygen in venous blood (PV02), Serum potassium
etal. %5 0-8550 396 170 Activated partial thromboplastin time, Serum
lactate, pH of arterial blood Serum total protein,
Hemoglobin Complement C3 Complement C4
Interleukin 1 beta Interleukin 6 Interleukin 17 D-
dimer, Aspartate aminotransferase Alanine,
aminotransferase Serum calcium, Serum ferritin
Lymphocyte count, Lactate dehydrogenase Serum
albumin, NT-pro hormone B-type natriuretic
peptide, pH of venous blood, Bicarbonates by
arterial blood gas analysis, Serum direct bilirubin
Serum total bilirubin T wave axis, P wave axis
R wave axis Atrial rate Ventricular rate PR interval
QRS duration

Va|d7§>t al. 73 0.8400 1514 | 2201 Not reported

age, BNP, urea nitrogen, total platelet count,
Yu et al.® 9 0.8060 172 74 | average platelet volume, D-dimer, high-sensitivity
troponin |, LDH and creatinine kinase isoenzyme
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Table 7- Deep Learning models that are used to predict patient mortality in patients admitted to hospital
from COVID-19, with the training set being the number of people used to create the model and the test set
being the number of people used when validating the model, sorted by highest AUROC (n=3)

Author Number of AUROC Training Test Parameters looked at
incorporated set Set
parameters
Zhuetal.”® 5 0.9540 187 33 D-dimer, oxygen index, neutrophil
to lymphocyte ratio (NE:LY), C-
reactive protein (CRP), and
lactate dehydrogenase (LDH).
Meng et al.” 5 0.9430 246 120 sex, age, severity grade, and
with/without chronic disease) and
image features
Lietal.”® 6 0.8480 997 111 age, LDH, procalcitonin, troponin,
CRP and Sp0O2
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