SUPPLEMENTARY MATERIALS

Table S1. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

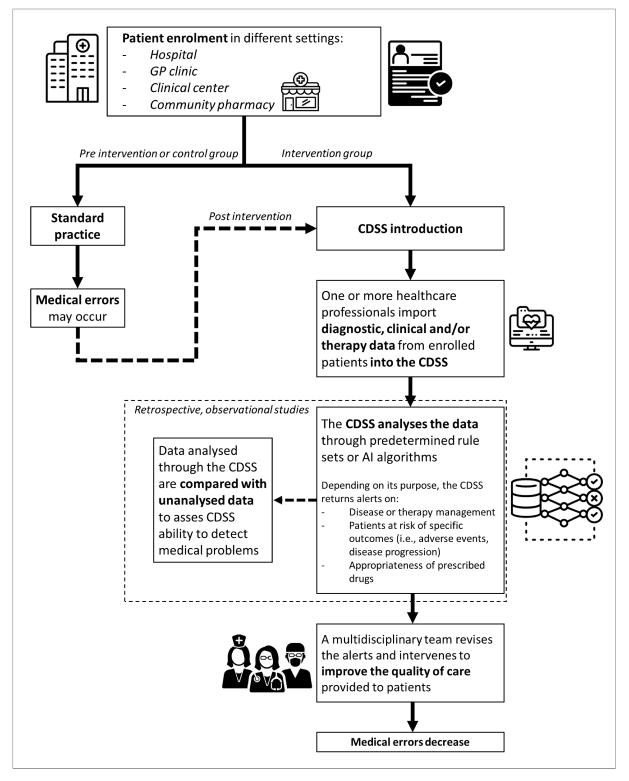
SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3-4
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	NA
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5-6
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	6
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	5 (Figure 1)
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	5-6 (Figure 2)
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	5-6
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	6-7

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	NA
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	6
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	7
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Supplementary material, Table S2
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	NA
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	8-9
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	10
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	11-14
Limitations	20	Discuss the limitations of the scoping review process.	14
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	13-14
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	15

Table S2. Scoping review results

Authors, year	Country	Setting (number of sites)	Clinical area	CDSS	Platform	CDSS aim	Study design	Baseline patient complexit Y	Interventi on duration	CDSS users	Study phases	Pharma cist particip ation	Training before interven tion	Informat ive report to patients	Follow- up	Primary outcome	Results
Blum MR, et al. 2021 [1]	Switzerla nd	hospital (multicen tric)	geriatrics	rule- based	web-based software	prescript ive appropri ateness	RCT	polymedi cated	19-24 months	multidi sciplina ry team	interve ntion	yes	no	no	yes	number of (re)- hospitali zations	outcome non- achieved
Qu J, et al. 2021 [2]	China	hospital (multicen tric)	cardiolog Y	guidelin es	smartphon e-based application	medicati on review	RCT	NA	13-18 months	multidi sciplina ry team	interve ntion	no	yes	no	no	prescript ion rate of drugs of interest	outcome non- achieved
Mastrian ni A, et al. 2021 [3]	USA	hospital (monocen tric)	pediatrics	digital checklis t	integrated into a vital sig monitor	disease manage ment	pre-post intervent ion study	need for resuscitati on	≤6 months	multidi sciplina ry team	pre- post CDSS implem entatio n	no	no	no	no	percent of vital signs docume nted	outcome only partially achieved
Menon S, et al. 2021 [4]	USA	hospital (monocen tric)	pediatrics	guidelin es	integrated into EHR	AKI detectio n	pre-post intervent ion study	chronic kidney disease	≤6 months	multidi sciplina ry team	pre- post CDSS implem entatio n	no	yes	no	yes	AKI progressi on	outcome achieved
Wasylew icz ATM, et al. 2021 [5]	The Netherlan ds	hospital (monocen tric)	hospitaliz ed patients with feeding tube	guidelin es	NA	medicati on error detectio n	pre-post intervent ion study	need for feeding tube	≤6 months	pharma cist	pre- post CDSS implem entatio n	yes	yes	no	no	number of feeding tube- related medicati on errors	outcome achieved
Bourdea ux C, et al. 2020 [6]	The United Kingdom	hospital (monocen tric)	nephrolog Y	guidelin es	web-based software	AKI detectio n	pre-post intervent ion study	NA	7-12 months	multidi sciplina ry team	pre- post CDSS implem entatio n	yes	yes	no	no	AKI progressi on	outcome achieved
Lee V, et al. 2020 [7]	Canada	hospital (monocen tric)	pediatrics	predicti ve models	smartphon e-based application	risk score assessm ent	pre-post intervent ion study	NA	≤ 6 months	nurse	pre- post CDSS implem entatio n	no	yes	no	no	time to administ ration of intraven ous antibioti cs	outcome achieved
Holland WC, et al. 2020 [8]	USA	emergenc y departme nt (monocen tric)	substance use disorder	rule- based	integrated into EHR	disease manage ment	pre-post intervent ion study	opioid use disorder	7-12 months	clinicia n	pre- post CDSS implem entatio n	no	yes	no	no	prescript ion rate of drugs of interest	outcome achieved

Murphy ME, et al. 2020 [9]	Ireland	GP clinic (multicen tric)	diabetolo gy	rule- based	web-based software	disease manage ment	RCT	diabetes	NA	GP	interve ntion	no	yes	no	no	impact on glycemic control	outcome non- achieved
Tao L, et al. 2020 [10]	China	hospital (monocen tric)	hospitaliz ed patients	AI- based	integrated into EHR	diagnosis	retrospe ctive, observati onal study	NA	> 24 months	researc her	pre- post CDSS implem entatio n	no	no	no	no	diagnosis accuracy	outcome achieved
Moja L, et al. 2019 [11]	Italy	hospital (monocen tric)	hospitaliz ed patients	rule- based	integrated into EHR	prescript ive appropri ateness	RCT	comorbidi ties	13-18 months	clinicia n	interve ntion	no	no	no	no	resolutio n rate of medical problem s identifie d	outcome non- achieved
Bean DM, et al. 2019 [12]	The United Kingdom	hospital (monocen tric)	cardiolog Y	rule- based	integrated into EHR	risk score assessm ent	retrospe ctive, observati onal study	comorbidi ties	> 24 months	researc her	interve ntion	no	no	no	no	risk score assessm ent	outcome achieved
McDonal d EG, et al. 2019 [13]	Canada	hospital (multicen tric)	geriatrics	rule- based	web-based software	deprescri ption	pre-post intervent ion study	comorbidi ties	7-12 months	multidi sciplina ry team	pre- post CDSS implem entatio n	yes	no	yes	yes	proporti on of appropri ate or inapprop riate prescript ions	outcome achieved
Halpin KL, et al. 2019 [14]	USA	emergenc y departme nt (monocen tric)	pediatrics	rule- based	integrated into EHR	disease manage ment	retrospe ctive, observati onal study	adrenal insufficie ncy	19-24 months	clinicia n	pre- post CDSS implem entatio n	no	no	no	no	prescript ion rate of drugs of interest	outcome only partially achieved
Campbel l NL, et al. 2019 [15]	USA	hospital (multicen tric)	neurology	rule- based	integrated into EHR	deprescri ption	RCT	comorbidi ties	≤ 6 months	pharma cist	interve ntion	yes	no	no	no	delirium duration and severity	outcome non- achieved
Seal KH, et al. 2019 [16]	USA	hospital (monocen tric)	substance use disorder	guidelin es	NA	disease manage ment	RCT	high risk of opioid use disorder	19-24 months	multidi sciplina ry team	interve ntion	no	yes	yes	no	feasibilit y of the intervent ion and patients' satisfacti on	outcome non- achieved
Stipelma n CH, et al. 2019 [17]	USA	hospital (monocen tric)	infectious diseases	rule- based	integrated into EHR	risk score assessm ent	pre-post intervent ion study, retrospe ctive	NA	> 24 months	multidi sciplina ry team	pre- post CDSS implem entatio n	no	yes	no	no	risk score assessm ent	outcome achieved
Choi KS, et al.	South Korea	hospital (monocen tric)	nephrolog Y	rule- based	integrated into CPOE	medicati on review	retrospe ctive, observati	chronic kidney disease	≤6 months	multidi sciplina ry team	interve ntion	yes	no	no	no	proporti on of appropri	outcome achieved


2019 [18]							onal study									ate or inapprop riate prescript ions	
Muth C, et al. 2018 [19]	Germany	GP clinic (multicen tric)	geriatrics	rule- based	NA	medicati on review	RCT	polymedi cated	NA	multidi sciplina ry team	interve ntion	no	yes	no	no	prescript ion rate of drugs of interest	outcome non- achieved
Bond SE, et al. 2017 [20]	Australia	hospital (multicen tric)	infectious diseases	guidelin es	web-based software	prescript ive appropri ateness	pre-post intervent ion study	NA	19-24 months	multidi sciplina ry team	pre- post CDSS implem entatio n	yes	yes	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome achieved
Berrevoe ts MAH, et al. 2017 [21]	The Netherlan ds	hospital (monocen tric)	infectious diseases	guidelin es	NA	antimicr obial prescript ion	RCT	infectious disease	> 24 months	clinicia n	pre- post CDSS implem entatio n	yes	yes	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome achieved
Shah AC, et al. 2019 [22]	USA	hospital (monocen tric)	hospitaliz ed patients with general anesthesi a	rule- based	integrated into EHR	anesthes ia manage ment	pre-post intervent ion study	need for general anesthesi a	≤ 6 months	clinicia n	pre- post CDSS implem entatio n	yes	no	no	no	complian ce with epidural infusion initiation	outcome achieved
Hulyalka r M, et al. 2017 [23]	USA	hospital (monocen tric)	pediatrics	digital checklis t	NA	disease manage ment	pre-post intervent ion study	children	≤6 months	researc her	interve ntion	no	no	no	no	risk score assessm ent	outcome achieved
Lipatov K, et al. 2022 [24]	USA	emergenc y departme nt (monocen tric)	infectious diseases	AI- based	NA	disease manage ment	retrospe ctive observati onal study	infectious disease	> 24 months	clinicia n	pre- post CDSS implem entatio n	no	no	no	no	risk score assessm ent	outcome non- achieved
Fried TR, et al. 2017 [25]	USA	hospital (monocen tric)	geriatrics	rule- based	integrated into EHR	prescript ive appropri ateness	RCT	polymedi cated (excessive)	13-18 months	clinicia n	interve ntion	no	no	yes	no	patient- clinician medicati on- related commun ication	outcome only partially achieved
Kercsmar CM, et al. 2019 [26]	USA	clinical center (multicen tric)	respirator y diseases	guidelin es	NA	asthma manage ment	RCT	asthma	> 24 months	multidi sciplina ry team	interve ntion	no	yes	no	no	asthma control	outcome achieved

Spat S, et al. 2017 [27]	Austria	hospital (monocen tric)	diabetolo gy	rule- based	smartphon e-based application	disease manage ment	noncontr olled intervent ion study	diabetes	NA	multidi sciplina ry team	interve ntion	no	yes	no	no	impact on glycemic control	outcome achieved
Webster R, et al. 2021 [28]	Australia	GP clinic (multicen tric)	cardiolog y	rule- based	smartphon e-based application	medicati on review	RCT	comorbidi ties	NA	multidi sciplina ry team	interve ntion	yes	yes	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome non- achieved
Kharban da EO, et al. 2018 [29]	USA	clinical center (multicen tric)	pediatrics	predicti ve models	integrated into EHR	hyperten sion recogniti on	RCT	children	19-24 months	multidi sciplina ry team	interve ntion	no	no	no	yes	hyperten sion recogniti on	outcome achieved
Elliott LS, et al. 2017 [30]	USA	communit y pharmacy (monocen tric)	chronicall y ill patients	rule- based	web-based software	medicati on review	RCT	high risk drugs	7-12 months	pharma cist	interve ntion	yes	no	no	no	number of (re)- hospitali zations	outcome achieved
Kim K, et al. 2018 [31]	USA	communit y pharmacy (NA)	chronicall y ill patients	rule- based	web-based software	prescript ive appropri ateness	RCT	polymedi cated	NA	pharma cist	interve ntion	yes	no	yes	no	proporti on of appropri ate or inapprop riate prescript ions	outcome achieved
Kessler S, et al. 2021 [32]	USA	hospital (NA)	chronicall y ill patients	AI- based	web-based software	medicati on review	retrospe ctive, observati onal study	polymedi cated (excessive)	13-18 months	multidi sciplina ry team	interve ntion	yes	no	no	no	number of (re)- hospitali zations	outcome achieved
Tamblyn R, Aet al. 2019 [33]	Canada	hospital (multicen tric)	hospitaliz ed patients with surgery	rule- based	integrated into EHR	medicati on review	RCT	comorbidi ties	> 24 months	multidi sciplina ry team	interve ntion	yes	no	no	yes	proporti on of adverse drug events	outcome only partially achieved
Mainous AG 3rd, et al. 2018 [34]	USA	GP clinic (multicen tric)	hematolo gy	rule- based	integrated into EHR	disease manage ment	quasi experim ental design	NA	≤ 6 months	GP	pre- post CDSS implem entatio n	no	yes	no	no	number of appropri ate ferritin tests order	outcome achieved
Winata S, et al. 2021 [35]	Australia	hospital (monocen tric)	geriatrics	rule- based	integrated into EHR	deprescri ption	pre-post intervent ion study	NA	≤6 months	multidi sciplina ry team	pre- post CDSS implem entatio n	yes	yes	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome non- achieved

Reynolds EL, et al. 2020 [36]	USA	hospital (monocen tric)	nephrolog Y	rule- based	integrated into EHR	medicati on review	RCT	neuropat hy	NA	clinicia n	interve ntion	no	no	yes	no	proporti on of appropri ate or inapprop riate prescript ions	outcome non- achieved
Vijayaku mar VK, et al. 2021 [37]	Norway	GP clinic (multicen tric)	respirator y diseases	guidelin es	web-based software	disease manage ment	RCT	COPD	NA	GP	interve ntion	no	no	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome only partially achieved
Gupta S, et al. 2019 [38]	Canada	hospital (multicen tric)	respirator y diseases	guidelin es	integrated into EHR	asthma manage ment	pre-post intervent ion study	asthma	19-24 months	clinicia n	pre- post CDSS implem entatio n	no	yes	yes	no	asthma control	outcome achieved
Pouliot JD, et al. 2018 [39]	USA	hospital (monocen tric)	hospitaliz ed patients with epidural anesthesi a	guidelin es	integrated into CPOE	medicati on review	retrospe ctive, observati onal study	need for epidural anesthesi a	≤ 6 months	clinicia n	pre- post CDSS implem entatio n	no	no	no	no	proporti on of appropri ate or inapprop riate prescript ions	outcome non- achieved
Heard KL, et al. 2019 [40]	The United Kingdom	hospital (monocen tric)	infectious diseases	guidelin es	integrated into EHR	antimicr obial prescript ion	retrospe ctive observati onal study	infectious disease	≤ 6 months	pharma cist	pre- post CDSS implem entatio n	yes	no	no	no	number of cases reviewed using the CDSS	outcome achieved
Wasylew icz ATM, et al. 2021 [41]	The Netherlan ds	hospital (monocen tric)	hospitaliz ed patients with feeding tube	guidelin es	integrated into EHR	prescript ive appropri ateness	pre-post intervent ion study	need for feeding tube	≤6 months	pharma cist	pre- post CDSS implem entatio n	yes	yes	no	no	number of feeding tube related medicati on errors	outcome achieved
Aziz MT, et al. 2021 [42]	Pakistan	hospital (monocen tric)	oncology	rule- based	integrated into CPOE	medicati on review	observati onal study	cancer	7-12 months	pharma cist	interve ntion	yes	yes	no	no	number of medicati on errors	outcome achieved

Abbreviation: CDSS, Clinical Decision Support System; RCT, Randomized Controlled Trial; HER, Electronic Health Record; AKI, Acute Kidney Injury; AI, Artificial Intelligence; CPOE, Computerized Provider Order Entry; NA, Not Applicable; GP, General Practitioner; COPD, Chronic Obstructive Pulmonary Disease

Figure S3. Process steps for conducting effective studies with CDSSs

Abbreviations: GP, general practitioner; CDSS, clinical decision support system; AI, artificial intelligence

REFERENCES

1 Blum MR, Sallevelt BTGM, Spinewine A, et al. Optimizing Therapy to Prevent Avoidable Hospital Admissions in Multimorbid Older Adults (OPERAM): Cluster randomised controlled trial. *BMJ* 2021;374:n1585. 10.1136/bmj.n1585

2 Qu J, Du J, Rao C, et al. Effect of a smartphone-based intervention on secondary prevention medication prescriptions after coronary artery bypass graft surgery: The MISSION-1 randomized controlled trial. *American Heart Journal* 2021;237:79-89. 10.1016/j.ahj.2021.03.005

3 Mastrianni A, Sarcevic A, Chung L, et al. Designing Interactive Alerts to Improve Recognition of Critical Events in Medical Emergencies. *DIS'21* 2021;864-878. 10.1145/3461778.3462051

4 Menon S, Tarrago R, Carlin K, et al. Impact of integrated clinical decision support systems in the management of pediatric acute kidney injury: a pilot study. *Pediatric Research* 2021;89:1164-1170. 10.1038/s41390-020-1046-8

5 Wasylewicz ATM, van Grinsven RJB, Bikker JMW, et al. Clinical Decision Support System-Assisted Pharmacy Intervention Reduces Feeding Tube–Related Medication Errors in Hospitalized Patients: A Focus on Medication Suitable for Feeding-Tube Administration. *Journal of Parenteral and Enteral Nutrition* 2021; 45(3):625-632. 10.1002/jpen.1869

6 Bourdeaux C, Ghosh E, Atallah L, et al. Impact of a computerized decision support tool deployed in two intensive care units on acute kidney injury progression and guideline compliance: a prospective observational study. *Crit Care* 2020;24:656. 10.1186/s13054-020-03343-1

7 Lee V, Dunsmuir D, Businge S, et al. Evaluation of a digital triage platform in Uganda: A quality improvement initiative to reduce the time to antibiotic administration. *Plos One* 2020. 10.1371/journal.pone.0240092
8 Holland WC, Nath B, Li F, et al. Interrupted Time Series of User-centered Clinical Decision Support Implementation for Emergency Department–initiated Buprenorphine for Opioid Use Disorder. *Academic Emergency Medicine* 2020;27(8):753-763. 10.1111/acem.14002

9 Murphy ME, McSharry J, Byrne M, et al. Supporting care for suboptimally controlled type 2 diabetes mellitus in general practice with a clinical decision support system: A mixed methods pilot cluster randomised trial. *BMJ Open* 2020;10:e032594. 10.1136/bmjopen-2019-032594 10 Tao L, Zhang C, Zeng L, et al. Accuracy and effects of clinical decision support systems integrated with BMJ best practice-aided diagnosis: Interrupted time series study. *JMIR Med Inform* 2020;8:e16912. 10.2196/16912

11 Moja L, Polo Friz H, Capobussi M, et al. Effectiveness of a Hospital-Based Computerized Decision Support System on Clinician Recommendations and Patient Outcomes: A Randomized Clinical Trial. *JAMA Network Open* 2019;2(12):e1917094. 10.1001/jamanetworkopen.2019.17094

12 Bean DM, Teo J, Wu H, et al. Semantic computational analysis of anticoagulation use in atrial fibrillation from real world data. *Plos One* 2019. 10.1371/journal.pone.0225625

13 McDonald EG, Wu PE, Rashidi B, et al. The MedSafer Study: A Controlled Trial of an Electronic Decision Support Tool for Deprescribing in Acute Care. *JAGS* 2019;67:1843-1850. 10.1111/jgs.16040

14 Halpin KL, Paprocki EL, McDonough RJ. Utilizing health information technology to improve the recognition and management of life-threatening adrenal crisis in the pediatric emergency department: Medical alert identification in the 21st century. *J Pediatr Endocrinol Metab* 2019;32(5):513-518. 10.1515/jpem-2018-0566 15 Campbell NL, Perkins AJ, Khan BA, et al. Deprescribing in the Pharmacologic Management of Delirium: A Randomized Trial in the Intensive Care Unit. *JAGS* 2019;00. 10.1111/jgs.15751

16 Seal KH, Borsari B, Tighe J, et al. Optimizing pain treatment interventions (OPTI): A pilot randomized controlled trial of collaborative care to improve chronic pain management and opioid safety—Rationale, methods, and lessons learned. *Contemporary Clinical Trials* 2019;77:76-85. 10.1016/j.cct.2018.12.006

17 Stipelman CH, Smith ER, Diaz-Ochu M, et al. Early-onset sepsis risk calculator integration into an electronic health record in the nursery. *Pediatrics* 2019;144(2):e20183464. 10.1542/peds.2018-3464

18 Choi KS, Lee E, Rhie SJ. Impact of pharmacists' interventions on physicians' decision of a knowledge-based renal dosage adjustment system. *International Journal of Clinical Pharmacy* 2019;41:424-433. 10.1007/s11096-019-00796-5

19 Muth C, Uhlmann L, Haefeli WE, et al. Effectiveness of a complex intervention on Prioritising Multimedication in Multimorbidity (PRIMUM) in primary care: Results of a pragmatic cluster randomised controlled trial. *BMJ Open* 2018;8:e017740. 10.1136/bmjopen-2017-017740

20 Bond SE, Chubaty AJ, Adhikari S, et al. Outcomes of multisite antimicrobial stewardship programme implementation with a shared clinical decision support system. *J Antimicrob Chemother* 2017;72:2110-2118. 10.1093/jac/dkx080

21 Berrevoets MAH, Pot JHLW, Houterman AE, et al. An electronic trigger tool to optimise intravenous to oral antibiotic switch: A controlled, interrupted time series study. *Antimicrobial Resistance and Infection Control* 2017;6:81. 10.1186/s13756-017-0239-3

22 Shah AC, Nair BG, Spiekerman CF, et al. Process optimization and digital quality improvement to enhance timely initiation of epidural infusions and postoperative pain control. *Anesth Analg* 2019;128(5):953-961. 10.1213/ANE.000000000003742

23 Hulyalkar M, Gleich SJ, Kashyap R, et al. Design and α -testing of an electronic rounding tool (CERTAINp) to improve process of care in pediatric intensive care unit. *J Clin Monit Comput* 2017;31:1313-1320. 10.1007/s10877-016-9946-1

24 Lipatov K, Daniels CE, Park JG, et al. Implementation and evaluation of sepsis surveillance and decision support in medical ICU and emergency department. *American Journal of Emergency Medicines* 2022;51:378-383. 10.1016/j.ajem.2021.09.086

25 Fried TR, Niehoff KM, Street RL, et al. Effect of the Tool to Reduce Inappropriate Medications on Medication Communication and Deprescribing. *JAGS* 2017;65(10):2265-2271. 10.1111/jgs.15042

26 Kercsmar CM, Sorkness CA, Calatroni A, et al. A computerized decision support tool to implement asthma guidelines for children and adolescents. *J Allergy Clin Immunol* 2019;143(5):1760-1768. 10.1016/j.jaci.2018.10.060

27 Spat S, Donsa K, Beck P, et al. A Mobile Computerized Decision Support System to Prevent Hypoglycemia in Hospitalized Patients With Type 2 Diabetes Mellitus. *Journal of Diabetes Science and Technology* 2017;11(1):20-28. 10.1177/1932296816676501

28 Webster R, Usherwood T, Joshi R, et al. An electronic decision support-based complex intervention to improve management of cardiovascular risk in primary health care: a cluster randomised trial (INTEGRATE). *Med J Aust*. 2021;214(9):420-427. 10.5694/mja2.51030

29 Kharbanda EO, Asche SE, Sinaiko AR, et al. Clinical Decision Support for Recognition and Management of Hypertension: A Randomized Trial. *Pediatrics* 2018;141(2):e20172954. 10.1542/peds.2017-2954 30 Elliott LS, Henderson JC, Neradilek MB, et al. Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: A prospective pilot randomized controlled trial. *Plos One* 2017;2. 10.1371/journal.pone.0170905

31 Kim K, Magness JW, Nelson R, et al. Clinical Utility of Pharmacogenetic Testing and a Clinical Decision Support Tool to Enhance the Identification of Drug Therapy Problems Through Medication Therapy Management in Polypharmacy Patients. *JMCP* 2018;24(12):1251-1259. 10.18553/jmcp.2018.24.12.1250 32 Kessler S, Desai M, McConnell W, et al. Economic and utilization outcomes of medication management at a large Medicaid plan with disease management pharmacists using a novel artificial intelligence platform from 2018 to 2019: a retrospective observational study using regression methods. *JMCP* 2021;27(9):1186-1196. 10.18553/jmcp.2021.21036

33 Tamblyn R, Abrahamowicz M, Buckeridge DL, et al. Effect of an Electronic Medication Reconciliation Intervention on Adverse Drug Events: A Cluster Randomized Trial. *JAMA Network Open* 2019;2(9): e1910756. 10.1001/jamanetworkopen.2019.10756

34 Mainous AG 3rd, Carek PJ, Lynch K, et al. Effectiveness of Clinical Decision Support Based Intervention in the Improvement of Care for Adult Sickle Cell Disease Patients in Primary Care. *JABFM* 2018; 31(5):812-816. 10.3122/jabfm.2018.05.180106

35 Winata S, Liacos M, Crabtree A, et al. Electronic Medication Management System Introduction and Deprescribing Practice in Post-Acute Care. *JAMDA* 2021;22:90-95. 10.1016/j.jamda.2020.10.015 36 Reynolds EL, Burke JF, Banerjee M, et al. Randomized controlled trial of a clinical decision support system for painful polyneuropathy. *Muscle & Nerve* 2020;61:640-661. 10.1002/mus.26774

37 Vijayakumar VK, Mustafa T, Nore BK, et al. Role of a Digital Clinical Decision-Support System in General Practitioners' Management of COPD in Norway. *International Journal of Chronic Obstructive Disease* 2021;16:2327-2336. 10.2147/COPD.S319753

38 Gupta S, Price C, Agarwal G, et al. The Electronic Asthma Management System (eAMS) improves primary care asthma management. *Eur Respir J* 2019;53:1802241. 10.1183/13993003.02241-2018

39 Pouliot JD, Neal EB, Lobo BL, et al. The Role of Computerized Clinical Decision Support in Reducing Inappropriate Medication Administration During Epidural Therapy. *Hospital Pharmacy* 2018;53(3):170-176. 10.1177/0018578717741392

[40] Heard KL, Hughes S, Mughal N, et al. Evaluating the impact of the ICNET[®] clinical decision support system for antimicrobial stewardship. *Antimicrobial Resistance and Infection Control* 2019;8:51. 10.1186/s13756-019-0496-4

[41] Wasylewicz ATM, van Grinsven RJB, Bikker JMW, et al. CDSS assisted pharmacy intervention reduces feeding tube-related medication errors in hospitalized patients: a focus on medication suitable for feeding tube administration. *J Parenter Enteral Nutr* 2021;45(3):625-632. 10.1002/jpen.1869

[42] Aziz MT, Er-Rehman T, Qureshi S, et al. Role of the Novel Integrated Clinical Pharmacist Menu Software
 in Improving Medication Therapy Management. JPRI 2021;33(32B):103-114.
 10.9734/jpri/2021/v33i32B31749