support caseload management that was previously difficult to obtain through manual review of EHRs.

The systems efficiency audit revealed a reduction in duration of crisis and inpatient admissions following MaST implementation.

Conclusion The MaST RoC algorithm supports the identification of people more likely to use crisis services in NHS mental health trusts, is feasible to implement, and improves systems efficiency. The visualization of these insights enables improved caseload management within community mental health teams. EHR-derived algorithms can support real-world clinical practice to improve outcomes in people receiving NHS mental healthcare.

3 THE DOCUMENTATION OF ALLERGY ACROSS ELECTRONIC SYSTEMS FOR PATIENTS PRESENTING TO EMERGENCY DEPARTMENTS IN LEEDS

Jack Bennett, Madeleine Salter. University of Leeds

10.1136/bmjhci-2022-FCIASC.3

Objective How consistent is the recording of allergy documentation across multiple electronic systems in patients presenting to the emergency departments of a large UK tertiary trust?

Over 20% of the UK population are affected by one or more allergic disorders (1) and there has been shown to be a 615% increase in the rate of hospital admissions for anaphylaxis in the UK, between 1992 and 2012 (2). Correct documentation of patient allergies is essential to protect patients and prevent avoidable drug errors, estimated to cause around 1080 deaths annually in secondary care across England (3). Our objective was to determine how consistently allergies were recorded across multiple patient electronic record systems, in patients presenting to the emergency departments (ED) of Leeds Teaching Hospitals Trust.

Methods 50 patients were randomly selected from those presenting to the ED between 25th and 27th October 2021 with an allergy recorded on at least one electronic system. A further 51 patients were randomly selected from the those who had presented with anaphylaxis between 1st April 2020 and 31st March 2021. Their allergy status was then analysed retrospectively from the following five electronic records: Yorkshire Ambulance Service patient report form, Symphony (ED patient information system), the medical assessment record, Leeds Care Record (primary care summary) and cMEDS (electronic prescribing system). The patients’ records were then compared for accuracy relative to each other and if they were not identical, compared against part 1.2.1 of NICE guideline CG183 (5). This states that their medical record must include one of the following: ‘drug allergy’, ‘unable to ascertain’ or ‘none known’. Patients who did not have identical records, but ‘unable to ascertain’ listed instead, were recorded in a separate group as meeting this guideline due to the nature of ED presentations.

We excluded the following allergies: hay fever, dust mites and pollen. The group presenting with anaphylaxis had to have previously been diagnosed with the allergy before that attendance.

Results 413 individual electronic allergy records were analysed, of which 214 records were part of the anaphylaxis group and 199 were part of the non-anaphylaxis group. Only 17% of patients had synonymous records across the 5 possible electronic systems. Overall, 33% of patients had at least one record that stated they did not have an allergy when at least two others stated they did have an allergy. Concerningly in the anaphylaxis group, 20 individual records (9%) across 15 patients (27%) had records that stated they did not have an allergy, despite their attendance for an anaphylaxis reaction. 27% of all patients had either synonymous records or records that met the NICE guideline. Every patient who had three or more allergies did not have synonymous records.

Conclusion The inconsistency of recording allergy status in a patient’s health record demonstrates the importance of improved interoperability between electronic systems, to reduce the risk of administration errors and patient harm due to multiple versions of the ‘truth’. To mitigate the limitations of the current systems, it is important clinicians review the patient’s allergy status every time a medication is prescribed. This can be especially challenging in emergency and urgent health care environments, when due to a patient’s clinical status, they may be unable to provide an accurate allergy history.

Our findings are consistent with those of other studies, including a 2008 study which compared two key forms of patient allergy documentation, 36.5% of these records were not synonymous (4). This further suggests the need for additional research, not just across the trust but nationally. Depending on the results it is likely further safety measures may need to be introduced, especially in areas where multiple patient information systems are used or in patients who cannot accurately recall their own allergies. Further audits should also be carried out against the second part of the NICE guideline CG183, part 1.2.2, which sets criteria for how the allergy should be recorded (5).

4 REDUCTION OF ORDER ALERTS THROUGH FILTERS: IMPACT ON PHARMACISTS’ OVERRIDE RATE AND PERCEPTIONS OF ALERT FATIGUE

Daniel Chan. North York General Hospital (Toronto, Ontario, Canada)

10.1136/bmjhci-2022-FCIASC.4

Objective Clinical decision supports (CDS) in electronic medication order systems identify alerts for clinicians. However, CDS may cause alert fatigue, which is the tendency for clinicians to ignore prompts presented by CDS due to excessive numbers and/or their perceived limited clinical significance. Alert fatigue may increase the risk of missing clinically relevant alerts. At North York General Hospital, pharmacists managed over 50% of all medication CDS alerts amounting to approximately 60 alerts per day per pharmacist with an override rate of over 90% indicating a high likelihood of alert fatigue. Thus, we attempted to reduce pharmacists’ alert fatigue utilizing customizable filters.

Methods Optimizing medication CDS has traditionally centered around turning on or off alerts, changing alert severity levels or clinician role tailoring. These strategies can be labor and time-intensive requiring clinicians from different specialties to review hundreds of individual alerts. As such, this study pursued the use of customizable, context-based filters to reduce unnecessary alerts. Utilizing data from the EHR vendor’s
visual analytics dashboard and guided by pharmacists’ feedback, three customizable filters were applied. First, a filter to suppress alerts for medications that are ordered by the same prescriber during one session was implemented. Second, a filter to reduce alerts for medications that are commonly ordered both as scheduled and as needed was applied. Finally, customization was done on how long discontinued medications are eligible for alert checking by the medication CDS system. Data was collected 1 month prior to and 3 months after implementation for a duration of one month each. Alerts data was taken from the analytics dashboard. Pharmacists’ perceptions of alert fatigue were collected using a voluntary online survey. Adverse medication events data was obtained from the hospital’s incident reporting tool.

Results Comparing before and after implementation, total alerts decreased by 48.4% for pharmacists. In practice, this represented a reduction from 59.7 to 27.1 medication CDS alerts per day per pharmacist. However, pharmacists’ alert override rate was minimally changed from 98.1% to 97.3%. Fourteen (78%) of the 18 pharmacists surveyed felt there was an overall decrease in unnecessary alerts while 67% perceived they were able to spend more time on reviewing meaningful alerts post-implementation. Compared to pre-implementation, pharmacists reported a minor reduction in the percentage of alerts they deemed unnecessary or inappropriate from 66.8% to 59.3%. However, 78% still remarked that there was room for improvement in the CDS alerting system. The number of adverse medication incidents were similar between the periods before and after implementation. No incidents were found to be a result of the new customized contextual filters.

Conclusion The use of customizable filters may be a viable alternate approach to reducing alert volume without needing to completely turn off specific alerts or changing alert severity. Pharmacists’ perceptions of alert fatigue appeared to improve modestly post implementation. Comparison of medication incidents before and after implementation did not show an increase in medication errors. However, override rates remain elevated and pharmacists felt that further improvements could still be made to the medication CDS system.