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The world is abuzz with applications of 
machine learning and data science in 
almost every field: commerce, transporta-
tion, banking, and more recently, health-
care. Breakthroughs in these areas are a 
result of newly created algorithms, improved 
computing power and, most importantly, the 
availability of bigger and increasingly reliable 
data with which to train these algorithms. 
For healthcare specifically, machine learning 
is at the juncture of moving from the pages 
of conference proceedings to clinical imple-
mentation at the bedside. Yet, succeeding in 
this endeavour requires synthesising insights 
from both the algorithmic perspective as well 
as the healthcare domain to ensure that the 
unique characteristics of machine learning 
methods can be leveraged to maximise bene-
fits and minimise risks.

While progress has recently been made 
in establishing certain guidelines or best 
practices for the development of machine 
learning models for healthcare as well as 
protocols for the regulation of such models, 
these guidelines and protocols tend to over-
look important considerations such as fair-
ness, bias and unintended disparate impact.1 2 
Nevertheless, it is widely recognised in other 
domains that many of the machine learning 
models and tools may have discriminatory 
effect by inadvertently encoding and perpet-
uating societal biases.3

In this special issue, we highlight that 
machine learning algorithms should not be 
focused solely on accuracy but should be eval-
uated with respect to how they might impact 
disparities in patient outcomes. Our special 
issue aims to bring together the growing 
community of healthcare practitioners, 
social scientists, policymakers, engineers and 
computer scientists to design and discuss 
practical solutions to address algorithmic 
fairness and accountability. We invited 
papers that explore ways to reduce machine 
learning bias in healthcare or explain how 

to create algorithms that specifically alleviate 
inequalities.

To prevent artificial intelligence (AI) from 
encoding the disparities that exist, algorithms 
should predict an outcome as if the world were 
fair. If designed well, AI may even provide 
a way to audit and improve the way care is 
being delivered across populations. There is 
growing community momentum towards not 
just detecting bias but operationalising fair-
ness, but this is a monumental task. Some of 
the encouraging developments that we have 
seen have been incorporating patients’ voices 
in AI. Patient engagement is crucial if algo-
rithms are to truly benefit everyone.

The papers in this special issue cover a 
variety of topics that addressed the objectives 
laid out in the call, these were:

	► Identifying Undercompensated Groups 
Defined by Multiple Attributes in Risk 
Adjustment4

	► A Proposal for Developing a Platform 
That Evaluates Algorithmic Equity and 
Accuracy5

	► Can medical algorithms be fair? Three 
ethical quandaries and one dilemma6

	► Resampling to Address Inequities in 
Predictive Modeling of Suicide Deaths7

	► Evaluating algorithmic fairness in the 
presence of clinical guidelines: the case of 
atherosclerotic cardiovascular disease risk 
estimation8

	► Operationalizing fairness in medical AI 
adoption: Detection of early Alzheimer’s 
Disease with 2D CNN9

	► Global disparity bias in ophthalmology 
artificial intelligence applications10

	► Investigating for bias in healthcare algo-
rithms: A sex stratified analysis of super-
vised machine learning models in liver 
disease prediction11

It has been more than 5 years since the 
ProPublica investigative report on machine 
bias was published. The report detailed how 
a software used in judicial courts across the 
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USA to inform decisions around parole was prejudiced 
against black people. Everything we have achieved since 
then has always been geared towards understanding how 
difficult it is to prevent AI from perpetuating societal 
biases in algorithms.

There is a long road ahead before we can leverage 
the zettabytes of data that are routinely collected in the 
process of care. We should not only invest in storage and 
compute technologies, federated learning platforms, 
GPTs, GRUs and NFTs. Machine learning in healthcare is 
not just about predicting something for the sake of predic-
tion. The most important task is to augment our capacity 
to make decisions, and that requires understanding how 
those decisions are made.
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