Introduction
Biomarkers are defined as a set of characteristics that are objectively measured and used as indicators of normal biological processes, pathogenic processes or biological responses that appear due to exposure or therapeutic interventions.1 This comprises physiological, molecular, histologic and radiographic measurements.2 The US Food and Drug Administration (FDA) subclassifies susceptible/risk, diagnostic, monitoring, prognostic, predictive, response and safety biomarkers.1 They highlight that a full biomarker description must include the source or matrix, the measurable characteristic(s) and the methods used to measure the biomarker.1 The digitalisation of our world impacting daily living and healthcare broadens the spectrum of the possible source and methods used to measure biomarkers and introduces a novel dimension of measurable characteristics. This allows digital devices used daily, such as smartphones, wearable devices, sensors and smart home devices, to provide a new category of biomarkers, often called ‘digital biomarkers’. In recent years, digital biomarkers became increasingly present in routine care and in research in many areas of medicine, such as cardiology, oncology or COVID-19. For example, smartphone recorded cough sounds have been used as a digital biomarker to detect asthma and respiratory infections in clinical trials,3 4 or deep learning was applied to data from a three-axis accelerometer to predict sleep/wake patterns.4 5 Moreover, such digital biomarkers have spread in the field of neurology, which has a large unmet need for non-invasive and objective biomarkers reflecting cognitive and motor functions that are traditionally assessed with specific tests performed by neurologists.6 Beyond monitoring health and disease status, predicting the occurrence and development of diseases would be promising applications of such novel approaches.7
Thus, digital biomarkers have the potential to offer valuable insights on the health of patients. They usually have high temporal resolution (up to (quasi-)continuous), are usually objective (and not subject to interobserver variability) and can have high external validity as they may be applied in the patient’s routine environment (as opposed to, eg, the clinic or a research environment).8
Many everyday digital tools used mainly for entertainment/leisure purposes (eg, fitness trackers) are increasingly considered as a source of helpful information that may be transformed into digital biomarkers. Yet, with all this diversity in application and complex interaction with rapidly evolving technology, it becomes necessary to provide a clear and precise definition of the fundamental underlying concepts to facilitate research and decision-making with and on these novel approaches.
One of the first definitions of this novel type of biomarker was provided by Dorsey et al, who defined digital biomarkers as ‘the use of a biosensor to collect objective data on a biological (eg, blood glucose, serum sodium), anatomical (eg, mole size) or physiological (eg, heart rate, blood pressure) parameter obtained using sensors followed by algorithms to transform these data into interpretable outcome measures, helping to address many of the shortcomings in current measures.’ Furthermore, they stated that these new measures ‘include portable (eg, smartphones), wearable, and implantable devices, and are by their nature largely independent of raters.’9 A later definition given in 2020 by the European Medicines Agency (EMA) was based on ‘digital measures’ (‘measured through digital tools’) and did not include the requirement of algorithms as a defining feature: ‘a digital biomarker is an objective, quantifiable measure of physiology and/or behaviour used as an indicator of biological, pathological process or response to an exposure or an intervention that is derived from a digital measure. […]’)10
Others gave broader definitions including further defining features, for example, defining digital biomarkers as ‘objective, quantifiable, quantitative, physiological and behavioural data that are collected and measured by means of digital devices such as portables, wearables, implantables or digestibles. The data collected are used to explain, influence and/or predict health-related outcomes’.2 6 11
Overall, such a disagreement between definitions used by regulators and in articles published in high-impact biomedical journals raised concerns that no clear consensus exists among researchers and users of this novel approach and terminology, increasing the risk for miscommunication. There are numerous examples where differences in definitions have been recognised as critical cause of inefficiencies and delay in health research and avoidable controversy, uncertainty and potential harm in clinical care and public health.12–15 The Biomarkers, EndpointS and other Tools (BEST) framework developed by the FDA and US National Institutes of Health with ‘the goals of improving communication, aligning expectations, and improving scientific understanding’ highlights that ‘unclear definitions and inconsistent use of key terms can hinder the evaluation and interpretation of scientific evidence and may pose significant obstacles to medical product development programmes’.1We aimed to provide a systematic overview of the emerging literature on digital biomarkers and characterisation of the definitions of digital biomarkers that are provided in biomedical journal articles by performing a systematic mapping and citation analysis of all articles that prominently used the term ‘digital biomarker’. We sought to determine differences in characteristics of common definitions to provide a foundation for subsequent activities to develop clearer and consistent definitions that ensure improved application of digital biomarkers in research and healthcare decision-making.