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ABSTRACT
The integration of artificial intelligence (AI) into healthcare 
is progressively becoming pivotal, especially with 
its potential to enhance patient care and operational 
workflows. This paper navigates through the complexities 
and potentials of AI in healthcare, emphasising the 
necessity of explainability, trustworthiness, usability, 
transparency and fairness in developing and implementing 
AI models. It underscores the ‘black box’ challenge, 
highlighting the gap between algorithmic outputs and 
human interpretability, and articulates the pivotal role 
of explainable AI in enhancing the transparency and 
accountability of AI applications in healthcare. The 
discourse extends to ethical considerations, exploring the 
potential biases and ethical dilemmas that may arise in AI 
application, with a keen focus on ensuring equitable and 
ethical AI use across diverse global regions. Furthermore, 
the paper explores the concept of responsible AI in 
healthcare, advocating for a balanced approach that 
leverages AI’s capabilities for enhanced healthcare delivery 
and ensures ethical, transparent and accountable use of 
technology, particularly in clinical decision-making and 
patient care.

INTRODUCTION
Advancements in computing power have 
heightened the prominence of artificial 
intelligence (AI) in healthcare, thanks to its 
vast array of applications.1 From handling 
patient questions to assisting in surgeries and 
pushing forward pharmaceutical innovations, 
AI is offering notable advantages to both 
patients and the overall healthcare infrastruc-
ture.1 According to Statista, the AI health-
care market, which was valued at US$11 
billion in 2021, is forecasted to reach a stag-
gering US$187 billion by 2030.2 The neural 
networks and derived deep learning-based 
AI algorithms lack clarity and transparency, 
leading clinicians to hesitate or feel uncertain 
when making prognosis and diagnosis deci-
sions. The key question is how a clinician can 
convince by technologist with the evidence 
of the responses. The gap between the AI 
algorithms and understanding of humans 
is known as the ‘black box’ transparency. It 
is challenging to decide how users can trust 
that the outcomes of algorithms are correct 

and appropriate in respect to the analysis, in 
view of a particular medical situation. There 
is a common agreement that it is important 
to consider the explainability of AI seri-
ously, ensuring user’s trust and confidence.2 
Although the research and development of 
AI in healthcare has been ongoing for several 
decades, the current situation of the AI hype 
is way different than previous studies.3 After 
2018, there was a sudden increase in the 
domain of explainable AI (EXAI), with 600 
articles per year. However, there were only 
92 devices approved by the Food and Drug 
Administration (FDA) in 2022.4 The devel-
opment of deep learning technologies has 
an impact on the way we look at AI tools and 
is one of the reasons behind the excitement 
surrounding AI applications.1 Healthcare 
costs are skyrocketing, and the development 
of costly new therapies contributes to the 
development of new AI technologies.5 AI 
promises to alleviate the impact of this devel-
opment by the improvement of healthcare 
and making it more cost-effective.6

AI comes with a novel element to health-
care and its relationships.7 But revolutions 
rarely come without side effects. There are 
various concerns related to the use of AI 
in healthcare. Due to the massive use and 
advancement of AI technologies worldwide, 
questions have arisen regarding its impact on 
societal and individual issues.8 Over the last 
5 years, private companies, research institu-
tions and public sector organisations have 
issued ethical AI principles and guidelines. It 
needs to be stressed that AI should be used 
appropriately to ensure ethics, transparency 
and accountability. Despite an apparent 
consensus that AI should be ‘ethical’, there 
is a disagreement about what constitutes 
‘ethical AI’, as well as which ethical require-
ments, technical standards and best practices 
are required for its realisation. Calls for regu-
lations and policies are getting louder, which 
has led to the introduction of the concept of 
responsible AI.9
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In clinical practice, AI already often plays a major role 
in clinical decision support systems to assist the clinicians 
to make better and faster decisions in the diagnosis and 
treatment of the patients.10 These applications improve 
the quality of life of patients and healthcare providers 
including clinicians. Currently, the healthcare industry 
has aligned its operations with the vision of Healthcare 
4.0, but it is soon approaching the dawn of another para-
digm shift, termed Healthcare 5.0. This upcoming shift 
in healthcare will be more analytical and involve smart 
controls, virtual reality, and three-dimensional model-
ling.11 Thus, healthcare will be smarter, more personalised 
and dynamic, which includes more reason-based analytics 
with innovative business solutions. Advanced 5G network 
and IoT-based sensors integrated with mobile communi-
cations will make the healthcare technologies easier to 
deliver the remote communities.11 The development in 
healthcare promises to produce vast amounts of medical 
data including electronic patient records, images, as well 
as wearable and other sensor data. AI algorithms such 
as neural networks will perform complex analytics to 
process all the healthcare data to enable accurate disease 
prediction, detection and remote healthcare treatment.12

The incorporation of AI support in general practice 
is increasingly essential, particularly under time pres-
sures that can lead to diagnostic oversights. In the UK, 
instances of missed measles cases and misdiagnosed 
appendicitis during winter months have highlighted the 
need for improved diagnostic precision. AI systems, as 
evidenced by studies such as Miotto et al13 and Rajkomar 
et al,14 offer enhanced diagnostic accuracy by identifying 
subtle patterns and recognising specific symptoms that 
may be overlooked by human practitioners.

In this article, we adopt a multidisciplinary view of the 
major healthcare AI challenges: explainability, trustwor-
thiness, transparency and usability. We refer to the chal-
lenges of AI in healthcare throughout the manuscript 
and provide the necessary context for understanding.

CORE CONCEPTS
Explainability of AI has become one of the most debated 
topics, with implications that extend far beyond tech-
nical aspects. AI already outperforms humans in several 
analytics.15 While neural networks and associated deep 
learning approaches are popular due to their powerful 
performance, they typically act as ‘black boxes’, not 
providing users with insights into why a certain deci-
sion has been made. Compare this to a simple machine 
learning model, such as a decision tree, where recon-
structing the path from the starting parameters to a deci-
sion is straightforward. There are numerous tools and 
approaches in AI that offer explainability.9 The lack of 
explainability has been criticised in the medical domain, 
while legal and ethical uncertainties may impede progress 
and prevent AI from fulfilling its potential to improve the 
lives of patients and healthcare professionals.16 This all led 
to the development of the concept of EXAI. EXAI, based 

on feature engineering, enables the interpretability and 
explainability of AI algorithms.16 It is applied to different 
decision support systems to ensure trustworthy analytics 
and is used to manage large datasets, helping reduce bias 
and aiding in disease classification or segmentation.17

Trustworthiness of AI systems is crucial for their accep-
tance and effective use in various applications. Users 
should have trust and confidence in the system’s output, 
as highlighted in the research by Cutillo et al18 and Laato 
et al19 In other words, the trust of the users in AI-driven 
decisions is contingent on the system being perceived as 
valid and reliable.

Usability refers to the user’s ability to understand and 
use an AI model effectively. This encompasses compre-
hending the system’s goals, scalability and recognising its 
limitations. Cutillo et al18 underline that usability is key 
to ensuring that users can harness the potential of AI 
models. For instance, in business settings, understanding 
the objectives and limitations of AI-driven analytics tools 
is essential for users to make informed decisions and 
leverage the technology effectively.

Transparency and fairness are essential for building 
trust in AI systems. Users need to understand the system’s 
mechanics and the influence of different inputs on its 
outcomes. Studies by Cutillo et al18 and Laato et al19 high-
light the significance of transparent AI models. When 
users have access to information about the model’s inner 
workings, they are more likely to trust its decisions. More-
over, transparent models are critical for ensuring fairness 
and preventing bias in AI systems, as they allow users to 
closely examine and understand the decision-making 
process.20

In view of ethics in medicine, explainability improves 
the trustworthiness of the AI applications. Perhaps the 
strongest benefit comes from uncovering potential 
biases in the AI models.19 As these models heavily rely 
on training data, they can reflect sampling bias, such as 
the over-representation of a specific demographic that 
does not generalise to the target population.21 This can 
be harmful to under-represented and vulnerable groups. 
Other types of biases to mention include exclusion bias, 
where features or instances that could explain trends in 
the data are omitted, and prejudice bias, where stereo-
types directly or indirectly influence the dataset. Consid-
ering explainability in the development of AI models for 
medicine directly benefits the discussion about responsi-
bility in their use, as it offers safety-checks along the road. 
Furthermore, explainable methods often provide novel 
insight into the dataset and can be used for knowledge 
discovery.22 The lack of scientific knowledge may lead to 
unintended consequences in emergency responses, thus 
remaining a fundamental research gap and obstructing 
the creation of new knowledge.

Moreover, the contention that AI models encode human 
experience introduces the challenge of inherent biases, 
as discussed by Buolamwini and Gebru.23 They highlight 
how biased training data can result in discriminatory 
outcomes, emphasising the importance of addressing 
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biases at the model development stage to ensure fairness. 
The limitation of AI models by the experiences of their 
developers, as argued by Mittelstadt et al,24 raises concerns 
about the potential perpetuation of existing biases and 
the lack of diversity in perspectives during the model 
creation process.

The argument that dependence on human expertise 
limits innovation potential in AI models is well founded, 
particularly in domains such as cancer progression. The 
reliance on human-guided categorisation, such as tissue 
type, can indeed restrict the development of models with 
a more profound causal understanding. The call for inno-
vation in cancer modelling is echoed by Hoadley et al,25 
who advocate for integrative approaches that go beyond 
traditional classifications and consider diverse data types 
to enhance the accuracy and insightfulness of AI models.

IMPLEMENTATION CHALLENGES ACROSS THE GLOBE
The evaluation of AI in healthcare presents a complex 
landscape, particularly when considering its implementa-
tion across different global regions. While the potential 
benefits of AI in healthcare are substantial, varying socio-
economic conditions, healthcare infrastructures, regu-
latory frameworks and cultural factors can significantly 
impact the adoption and effectiveness of AI technologies.

In high-income regions, such as North America and 
Western Europe, where well-established healthcare 
systems exist, the primary implementation challenge 
lies in ensuring the seamless integration of AI tools with 
existing workflows and data systems while adhering to 
stringent privacy regulations. In contrast, low-income and 
middle-income regions, such as parts of Africa and South-
east Asia, face challenges related to resource constraints, 
including limited access to quality data and healthcare 
professionals. Additionally, ensuring that AI algorithms 
are culturally and linguistically appropriate is crucial.

Disparities in healthcare access and resources between 
urban and rural areas can affect the equitable imple-
mentation of AI in healthcare. It is important to note 
that these issues can vary within regions and are subject 
to change over time. Successful AI implementation in 
healthcare requires a deep understanding of the local 
context, collaboration with stakeholders and a tailored 
approach to address region-specific challenges.

Moreover, cultural and ethical considerations may 
differ, influencing the acceptance and adoption of 
AI-driven healthcare solutions. Bridging these dispar-
ities in AI healthcare implementation demands a 
multifaceted approach that encompasses not only tech-
nological advancements but also policy harmonisation, 
capacity building and global collaboration to realise the 
full potential of AI in healthcare across diverse global 
regions. Careful consideration of these factors is essen-
tial to ensure compliance with local regulations, respect 
for cultural norms and the development of adaptable 
solutions.

CONCLUSION
As healthcare increasingly integrates AI into its core 
operations, the call for responsible AI becomes not just 
advisable, but imperative. The delicate nature of health-
care decisions, combined with the vast potential of 
AI, mandates an ethical, transparent and accountable 
approach. By emphasising responsibility in AI’s deploy-
ment, we safeguard patient trust, ensure data privacy and 
uphold the time-honoured principles of medical ethics. 
The fusion of technology and healthcare holds vast 
promise, but only if we navigate its intricacies with dili-
gence and conscientiousness. Hence, the drive towards 
AI in healthcare must be paralleled with an unwavering 
commitment to its responsible use.
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