Discussion
This study of a large population of NHS patients with HF demonstrates that, across a 6-year period, index diagnosis was predominantly through hospital admission. In a PSM cohort, index diagnosis of HF via hospital versus community pathway was associated with an increased rate of death in the first 24 months, with no difference between groups by 72 months. We found a substantial longitudinal cost saving (~£2500) following index HF diagnosis taking place through community pathways.
Routes to diagnosis
Across the overall population of nearly 35 000 patients diagnosed with HF in NWL from 2015 to 2020, 70% were first diagnosed via hospital pathways. This proportion has changed little from the findings reported by Bottle et al (as cited in the NHS Long Term Plan), that between 2010 and 2013, 80% of HF diagnoses were first documented in hospital records.7 Our findings using data from 2015 to 2020 indicate that intervening efforts to improve community-based detection of HF have, at best, had modest impact. A substantial portion of HF is precipitated by acute disease, for example, myocardial infarction, requiring urgent hospitalisation. Such cases should not be counted as missed opportunities. However, previous studies found that among those diagnosed in hospital, the vast majority had also seen a GP in the previous year, with 37% having documented symptoms of HF.14 Notably, in our overall HF population there was no difference in the number of primary care encounters between the hospital and community pathway cohorts, with similar documented rates of HF symptoms prior to diagnosis (online supplemental table 5). This may represent heterogeneity in awareness of HF within primary care services, but may also highlight the non-specific nature of HF symptoms, which overlap with other common cardio-respiratory pathologies (eg, COPD)—a diagnostic challenge discussed in recent international guidelines.2 This is reflected in our unmatched study population, where multimorbidity (the presence of two or more long-term conditions) was more common among patients in the hospital pathway (online supplemental table 4).
Prognostic association of route to diagnosis
We observed an early survival advantage associated with community pathway-based diagnosis to 24 months, which was not sustained at 72 months compared with hospital pathway-based diagnosis, reflecting the poor long-term prognosis in this condition. The mortality associated with HF is estimated to be between 53% and 67% five years after diagnosis with hospitalisation a known adverse prognostic marker in established HF.11 Consequently, the convergence of survival curves by 72 months may represent a ‘regression to the mean’ effect associated with heterogeneous adherence to gold standard therapy in both cohorts over a sustained period. Real-world estimates of adherence to gold standard therapy are low, with the most optimistic ranging from 40% to 60%, and declining as HF progresses.21 22 Translating the long-term protective effects observed in clinical trials requires dose optimisation, monitoring and patient concordance, and this could be better achieved if resource freed up by effective community diagnosis was channelled towards supporting patient adherence, compounded by the possibility that patients diagnosed via the community pathway were earlier in their HF disease course, and therefore more likely to realise the benefits of early initiation of prognostically beneficial therapies.5
Our findings are consistent with Taylor et al,11 who examined data from 2000 to 2017 to identify a patient’s first coded instance of an HF diagnosis in primary care records, and reported that those without hospital admission 3 months before or after diagnosis had better survival. A study reporting on data from 1997 to 2010 found significantly worse outcomes among patients where HF was only ever coded in hospital records and never registered in the primary care record.19
Cost of heart failure
Across all health systems, the costs associated with HF are rising. However, detailed contemporary estimates on a per-patient level are lacking. To our knowledge, this is the first study to quantify the health economic opportunity of diagnosis through community pathways using a PSM cohort. Hospitalisation is the main driver of cost for HF.23 As might be expected, we found non-elective admission costs accounted for the majority (84%) of the long-term increased costs of patients in the hospital pathway. However, understanding the health economic burden of HF through units of hospitalisation has substantial limitations. Studies have shown that post-HF diagnosis, there is an average of one hospital admission per year, of which two thirds are attributable to non-cardiovascular comorbidities.24 However, we have shown that index HF diagnosis through hospital admission is unlikely to be coded hierarchically, that is, the primary diagnosis may be listed as common mimics and exacerbating conditions (eg, COPD, pneumonia) with new HF listed among the secondary diagnoses. Teasing apart the contribution of HF to the cost of each hospital admission is therefore challenging. More pragmatically, our study highlights that a community pathway-based diagnosis of HF offers an overall longitudinal cost-saving of £2500 per patient. This offers a compelling variable for cost modelling and an intelligible, robust metric for policymakers. Realising even a fractional increase in community diagnosis could release substantial cost savings and return on investment. In a simple example cohort of 10 000 patients (close to the number of patients diagnosed every 18 months in NWL), where 70% would otherwise be expected to be diagnosed through hospital admission, a reduction to 60% through increased community pathway activity could release a £2.5M saving.
Strengths
The population of NWL represents a wide spectrum of sociodemographic inequality and includes the areas of highest ethnic diversity in the UK.25 To our knowledge, this is the first study to quantify the per-patient cost implications of route to index diagnosis of HF, adding a compelling health economic argument to the more established clinical rationale for investing in community diagnostic services.7 Notably our study accounted for a period of 6 years ending in 2020, and thus offers a contemporary picture of HF care, across a large population. This has been enabled using real-world primary care, secondary care, and cost data within the Discover dataset, as well as now routine systematic sharing of hospital discharge summaries to improve fidelity between primary and secondary care coding.
Not only were we able to extensively match on demographic and comorbidity profile, but also on cost before HF diagnosis. This will have controlled for potential confounding introduced by patients with extreme rates of service utilisation associated with rare and/or high-cost conditions; thereby specifically mitigating over-estimation of the benefits of community-based diagnosis due to the hospital cohort having higher costs before HF diagnosis.
Limitations
The results of our study are best interpreted in the context of its limitations. Despite extensive propensity-score-matching across demographic, clinical and cost variables, some residual confounding is likely to remain and tempers our conclusions. The examination of real-world data is universally limited by the inconsistency and variable fidelity of medical coding in capturing variables of interest. HF is rarely coded with a granularity that describes preserved, moderately reduced or reduced ejection fraction. This may be addressed by future improvements in the coding of echocardiography results. Though this study interrogated granular clinical and cost data, substrata important to understanding a patient’s HF management were not available, for example, specific doses of disease modifying drugs that would have allowed inference beyond whether a patient was prescribed an HF-related medication, to whether this was optimised. Similarly, HF-specific quality of life metrics were not available for this cohort. Collectively this means we have likely been unable to fully account for differences in HF severity, where a degree of over-representation of severe disease in the hospital pathway may have skewed our observations. Lastly, though diverse in most other ways, the population of NWL does not encompass any rural/remote communities, whose experience of community versus hospital care may not be represented by our study.
Opportunities
A recent study by Kahn et al searched primary care EHRs to identify a missed cohort of patients with HF, inviting them to a primary care-based HF service that enabled optimisation of prognostic medication and an increase in device prescription.26 Future research could quantify the clinical and health economic impacts of invited and/or opportunistic screening of an at-risk population identified through analysis of population-wide linked datasets. This approach, combined with emerging point-of-care testing technologies now reaching maturity27 could underpin a programme comparable to the NHS Diabetes Prevention Programme and the NHS Health Check. For example, artificial intelligence applied to a single-lead ECG may increase opportunistic detection by becoming integrated with commonly used tools such as stethoscopes.27 Given our finding that most patients had primary care encounters before their index HF diagnosis, many would have had a stethoscope examination, prompted by symptoms such as breathlessness. Ultimately, despite progress in therapies and evidence for best practice, the outlook for HF remains bleak, and community pathways may be best positioned to address this if powered by disruptive innovations that leverage integrated data and technology.