Discussion
This is the first study to explore the experiences and opinions of Irish medical students about AI/ML in their medical degree programme. Medical students reported limited awareness and education on AI/ML. Notably, around four in ten of survey respondents had not heard of the term ‘machine learning’. Around two in three respondents reported no time spent learning about AI/ML during their whole medical degree. Although a minority of students did report some formal teaching on AI/ML, it is unclear whether this was part of their compulsory medical curriculum or (for example) via elective medical courses or guest lectures. Perhaps reflecting training gaps or lack of confidence on the topic, few students reported reading any academic articles on AI/ML in medicine. Relatedly, students were divided about their plans to fill educational gaps, with almost half of students reporting some uncertainty about whether they would undertake additional learning on these topics. Contrary to our expectations, younger participants were less likely to have heard of ML; however, the majority of participants were typically young adults: 91% had a birth year between 1992–1999. Conceivably, with greater variance in ages of participants we might have observed different findings. Finally, while the majority of students reported a lack of formal instruction on AI/ML in medicine, considerably fewer students seemed to approve of the status quo. In common with other surveys,8 9 12–14 the majority of medical students considered learning about AI/ML should form part of their formal medical degree.
To help address education deficits, we suggest medical schools consider developing short, cross-disciplinary courses in digital health, including an understanding of augmented intelligence, to empower students to keep abreast of technological advances. Indeed, the need for further education on these topics may also apply to allied health professional training including nursing, pharmacy, clinical psychology, and physiotherapy. Because technology changes rapidly, we recommend that training and education encompass critical thinking skills so that students are well equipped to appraise new technologies. For example, courses in evidence-based medicine might incorporate discussion about evaluation of clinical decision support systems, the potential for algorithmic biases in data sets, and challenges associated with the explainability of AI/ML decisions. Medical ethics courses might usefully incorporate topics related to patient privacy with the use of digital devices and apps, and the potential for AI/ML-tools to mitigate or exacerbate digital divides in healthcare. Finally, we caution that without solid curricular advances, medical students and health professionals may rely too heavily on hype or inflated media reportage to inform their views, leading to negative consequences for healthcare. For example, surveys in Canada and the UK suggest that, under the misguided view that radiology will be imminently replaced as a field by AI/ML, students are more likely to rule out this specialty as a career choice.12 15
This study has some strengths and limitations. A strength was soliciting the views of students from institutions in geographically distinctive regions of the country. However, the moderate response rate (43%) raises questions about representativeness. Response biases could also have influenced our findings depending on whether students most enthusiastic or those inclined to view AI/ML negatively answered the survey. While our aim was to gauge the general awareness of medical students about these topics, some survey items, such as ‘familiarity with big data analytics’ might be challenged as vague and open to interpretation. We recommend that qualitative research methods might provide more nuanced findings on students’ opinions and awareness about AI/ML in medicine. In addition, we suggest future studies might usefully explore the opinions and familiarity of medical faculty about AI/ML in medical education, and/or evaluate medical curricula course content to assess where, if at all, students acquire learning on these topics. Finally, the survey was administered prior to the COVID-19 pandemic which has overseen considerable developments and attention given to the role of AI/ML-enabled tools including in digital epidemiology and public health. Conceivably, as a result, had the survey been undertaken today we might have found increased awareness or familiarity about these topics among medical students. However, we emphasise it remains to be seen whether this heighted attention translates into tangible curricular developments. Furthermore, no surveyed medical school has since modified their curriculum to include education about AI/ML.
We close by noting, in recent years Ireland has gained recognition as a global technology hub with the fastest growing tech workforce in Europe.16 Despite these advances, we cannot help but observe the risk of digital education in healthcare lagging behind. Improvements in digital education will help prepare tomorrow’s doctors to lead policy and practice advances on the role of AI/ML-enabled tools in the health professions and in patientcare.