Introduction
A large focus for healthcare systems worldwide is to improve the efficiency of resource use, especially the amount devoted to unscheduled care in hospital. For example, almost a quarter of National Health Service (NHS) England overall expenditure in 2013/2014 was spent on unscheduled care.1 Unscheduled care has been defined as ‘any healthcare provided with less than 24 hours notice’. Unscheduled hospital admissions form a growing part of hospital care: between 2006/2007 to 2017/2018, the number of unscheduled admissions from accident & emergency (A&E) departments has been steadily rising.2
The UK House of Commons Public Accounts Committee3 estimates that 24% of the total 5.8 million emergency admissions in England during 2016–2017 might have been avoided if more effective community healthcare and case management had existed.4 Examples here include interventions co-ordinated in primary care, where one study in NHS Highland showed significant reductions in unplanned hospitalisation for patients with multiple morbidities.5 Other initiatives, ranging from self-management support to better integration between healthcare and social care, have also been tested to reduce hospital readmission (See6 for a detailed review). The evidence base relating to the effectiveness of such interventions is however rather mixed, and also challenging to interpret, given patient heterogeneity in terms of case-mix.
Relative to primary and community care, less attention has been devoted to initiatives within the hospital setting. However, there is now growing provision of enhanced information support between healthcare professionals. For example, within Scotland, the key information summary aims to enhance communication between primary and secondary care.7 It allows selected parts of the general practitioner (GP) electronic patient record to be shared electronically with other parts of the NHS, and currently covers 2%–3% of the Scottish adult population with the most complex health and/or social care needs.
Predictive modelling tools to identify patients at high risk of being a frequent A&E attender or being readmitted are now available, for instance Patients at Risk of Readmission and Adjusted Clinical Groups-Predictive Model used in the USA and UK,8 as well as Hospital Admission Risk Prediction in Canada (see ref. 9 for a rapid review on predictive validity of these tools). In Scotland, an algorithm called Scottish Patients at Risk of Readmission and Admission (SPARRA) is an available risk prediction tool that predicts an individual’s risk of unscheduled admission to hospital within the next 12 months. It has been used to proactively manage future hospital demand among population groups likely to make greater use of hospital resources.10 11 While modelling studies predict that such tools should lead to reductions in the number of unplanned hospital admissions,11 there is a paucity of evidence from real world implementation studies regarding whether they do in practice reduce the volume and costs associated with unscheduled hospital admissions.12
The aim of this paper therefore is to report the effectiveness of a novel intervention, implemented in NHS Lothian, Scotland, that aimed to reduce the risk of future unscheduled hospital admission. The intervention involved application of the SPARRA tool to identify patients at high risk of future unscheduled hospital admission, followed by deployment of appropriate key workers (eg, addictions or psychiatric nurses or consultants) to engage with patients, relatives, GPs and the wider hospital team to develop patient-centred care plans. This paper focuses on four potential effects of the intervention: the number of unscheduled attendances to emergency department (ED) and unscheduled hospital admissions, length of hospital stay, total costs of unscheduled admissions and overall total acute hospital costs. Unlike many interventions that prioritise older adults,13–15 this intervention focused on a wider group of participants with long term conditions and younger frequent ED attenders. Therefore, it contributes to the literature on hospital based interventions among a wider patient group.