Introduction
Clinical dashboards integrate large volumes of routine data into a simple accessible format, and are intended to assist clinicians and managers to monitor and improve the quality of care.1 2 Dashboards have been used in primary care for a range of functions such as improving data quality and prevention,3 to improve the quality of surveillance4 and to promote medication safety.5
Evaluation of these dashboards should include a rapid communication on the quality achievement to their target audience. Formal usability studies also assess whether target users of a system interact with it as intended by the designers.6 Systematic usability testing and subsequent enhancements increase the possibility of tools being successfully integrated into routine clinical workflows, providing greater efficiency, and ultimately in quality improvement.7 8
Atrial fibrillation (AF) is one of the the most common and important heart arrhythmias; if undetected and left untreated, it can result in stroke and increased mortality. Early recognition of AF in practice can lead to early intervention with managing the risks of these complications. Current guidelines on the management of AF by National Institute for Health and Care Excellence (NICE), UK advises identifying and managing the underlying causes of AF, treating the arrhythmia and assessing and managing the risk of stroke in these patients.9 Clinical prediction scores such as CHA2DS2VASc predict the risk of thromboembolic disease including stroke10 and guide whether the benefits of commencing anticoagulation treatment outweigh risk. The risk of starting a patient on anticoagulation include assessing bleeding risk, for example, using the HAS-BLED score. While components used for calculating CHA2DS2VASc and HAS-BLED risk scores are well recorded, risk scores themselves are poorly recorded resulting in a gap in data quality. Anticoagulation therapy aims to reduce the risk of thromboembolic events. This has been achieved by the use of vitamin K antagonists, primarily warfarin, for many years. The introduction of direct oral anticoagulants (DOACs) such as apixaban and rivaroxaban to clinical practice has changed how AF is managed. DOACs have similar or better mortality and vascular outcomes than warfarin,11 and the added benefit of requiring much less monitoring than warfarin.12 However, the dosage regime varies between the different DOACs and is complex; errors are common and are associated with hospital admission.13 In the UK, the Quality and Outcomes Framework (QOF), a pay-for-performance scheme (P4P), was introduced to provide incentives to incentivise general practitioners to achieve indicator thresholds for managing chronic diseases.14 This has made a significant improvement to enhancing the quality of AF data being recorded in primary care during the last decade.
We developed an interactive dashboard to provide feedback data quality and the quality of AF management in primary care at the individual general practice level within the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network. The aim was to provide a tool for general practitioners to monitor data quality on a weekly basis. We carried out this study to evaluate its usability in primary care.