Discussion
In this feasibility trial, we evaluated the time-efficiencies and user experience of a newly developed mIDA service, following promising user feedback from an earlier proof-of-concept trial.11 The findings suggest that mIDA improves time-efficiencies by 54.8% from a CDE perspective, has the potential to reduce transcription error and improves the patient experience in the IDA service. This trial is part of a series of projects aimed at testing a new model of specialist outpatient diabetes care using various eHealth strategies.
The IDA service at the PAH has a capacity of accommodating 50 new diabetes patients per week. From the median time taken per IDA contact in this study and using a conservative estimate of 1 contact per patient per week, the total calculated time per week required for IDA using MDMS is 255 min as opposed to 565 min with the conventional IDA service. This equates to a potential CDE time saving of 5.16 hours/week. A previous cloud-based insulin titration study with 40 participants examining basal insulin initiation and titration had reported a greater time savings of 15.7 min per subject in the intervention arm.7 This would equate to a CDE time saving of 13.08 hours/week if this were to be replicated at the PAH IDA service. This difference in time savings are likely to be due to the within-subject design and inclusion of more complex participants (on both basal and bolus insulins) in our trial. Similarly, pregnant women with gestational diabetes, which like IDA requires frequent healthcare professional contact, had improved blood glucose control by using an app and required two less clinic visits on average during their pregnancy compared with non-users of the app.12
Phone contact requires synchronous communication and this study showed that a substantial proportion of patients (18.9%) were not readily available via phone contact. The mIDA programme can provide valuable feedback to patients through easier communication methods like text-messaging or in-app messages. The time savings are likely to be higher than reported in this feasibility trial, as the CDEs first used the MDMS system followed by the conventional approach for the same patient. Moreover, with regular MDMS use, the CDEs are likely to become quicker in navigating the system. Time taken for technical training of participants has not been considered in these calculations. This is because we foresee that in-person technical training can be replaced by patient codesigned step-by-step training videos, that the use of technology like mobile apps outside of a healthcare setting will become more widespread, and that the same individual might require multiple occasions of IDA service in their diabetes journey. Thus, we see that MDMS use provides the ‘gift of time’, enhancing the ability of the CDEs to see more patients and provide a high-quality service leading to better user experience for people with diabetes.12
Transcription errors are a significant concern when using conventional methods to deliver IDA. Although there was only a single instance of error, this could have led to potentially serious consequences had the error missed a documented hypoglycaemic episode and inadvertently resulted in increased insulin doses.13
The patient feedback questionnaire confirmed the earlier favourable proof-of-concept study scores on ease of use, the time required to use, and overall satisfaction with the MDMS along with helping the participants to be more confident in self-managing their diabetes.11 However, only a small proportion of participants entered their insulin doses as compared with BGL. Automation, such as the use of cloud-connected insulin pen devices, is likely to improve clinician access to data.14 Although the participants continued to have a few Bluetooth connectivity issues between the app and the glucose-meter, the majority of participants agreed that there were no technical problems using the system; this was an improvement on the proof-of-concept trial. With technological advances, this is not unexpected and is likely to improve with time.15 The CDEs provided feedback on patient safety measures and advised that displaying on the clinician portal a record of the patients accessing the clinicians’ message would be useful. This will help to close the communication loop and save time by avoiding further confirmatory patient follow-ups via phone.
As with the mobile insulin titration intervention study, we are now transitioning the mIDA programme to an implementation trial for understanding generalisability and acceptability among patients and providers.16 As technology advances, innovative solutions like patient facing-apps/devices that guide self-titration of insulin through automated prompts with support from healthcare providers will become increasingly available and might be even more cost-effective.6
Limitations of the trial include the small sample size. However, this was a feasibility trial with double the sample size from the earlier proof-of-concept trial. Reported literature suggests a number as low as 10 has been used in feasibility trials.17 Well-designed randomised controlled trials (RCTs) are required to compare the MDMS intervention versus conventional care, but we opted for a feasibility trial before an RCT based on a framework for telehealth interventions.18 Given our findings it is reasonable to hypothesise that MDMS could save time as in our trial the CDEs used MDMS first followed by conventional care. However, a possibility is that some of the conventional interactions might have helped better educate the participant regarding diabetes self-management, which might not be possible through text-messages alone. Hence, the mIDA programme might require a hybrid approach — a combination of regular text-messaging and occasional phone contacts if required. As the participants received both MDMS and conventional care, caution needs to be exercised in interpreting the user experience findings, especially in relation to the overall satisfaction, continued system use and self-management confidence. However, the MDMS intervention is a radical departure from conventional practice and the rest of the questions were specific to the MDMS intervention. The user experience questionnaire, though an unvalidated one, enabled the comparison of responses across the proof-of-concept and feasibility trials. Moreover, there were no highly reliable usability questionnaires specifically designed for mHealth apps at the time of conducting the trial.19 We did not report on adherence as it would be impossible to differentiate between the two approaches given a within-subject design. mHealth intervention trials have shown that the users improve glycaemic status in the short-term (up to 12 months)20 but reports regarding adherence are mixed and difficult to evaluate.11 21 As the IDA process usually lasts for a period of 4–6 weeks only, the service efficiency derived from mHealth strategies are likely to be sustainable.
We hope the findings of this feasibility trial lead to further research examining the cost-effectiveness of mHealth tools in assisting the IDA service. mHealth solutions like the mIDA programme have the potential to help design new models of care and build capacity to serve a wider cohort of patients within existing resources. Following this feasibility trial, our next step is to test a new model of outpatient specialist diabetes care that aims to redesign the current in-person visits for specialist care through the provision of better self-management support outside of clinic visits through enhancements to the MDMS such as contextual automated text-messages based feedback, periodic patient online self-report and provision of virtual clinics. The protocol of this pilot RCT has been published.22