Introduction
Cerebral palsy (CP) refers to a complex and multidimensional group of non-progressive but stable disorders in movement and posture experienced as a result of a neural lesion in the course of brain development (during the fetal period, birth, infancy and childhood).1 These disorders can affect all aspects of children’s development throughout their life.2 CP is often accompanied by seizures, speech abnormalities, verbal problems, vision disorders, reduced alertness, cognitive and behavioural disorders, sensory and perception problems, communication disorders, epilepsy and musculoskeletal problems.3 The symptoms of CP vary from one person to another and may change over time. Some individuals with CP may also be affected by other diseases, such as specific learning disorders and delayed development.4
Despite the advances in diagnostic technologies and detection of risk factors before and after birth, the average prevalence of CP has been reported as 2.11 per 1000 live births across the world.5 In developed countries, 2–2.5 infants per 1000 are born with CP. Moreover, the statistics indicate that CP affects more women than men and is more prevalent in whites than in blacks.6 It causes many economic problems and imposes heavy costs on patients, their families, the healthcare system and society.7 For instance, the average annual cost per CP patient has been reported to be $A43 431 in Australia and US$50 000 in the USA.8 9
The long-term and permanent complications as well as the high percentage of direct costs incurred for families reveal the need for extensive planning for the better management of this disease through obtaining up-to-date and efficient information.10 A key problem with CP is the spread and inconsistency of the related data and the lack of an integrated information system.9 11 An integrated CP information system is necessary as it can help improving disease control, identifying the most appropriate care plan and facilitating patient follow-ups through easy access to information. In addition, this system can lead to a more accurate identification of the prevalence, incidence and burden of the disease as well as the number of health centres, equipment and facilities required to provide services to these patients, thereby helping prioritise the national requirements for implementing future prevention, control and treatment programmes and activities.12
There have been different healthcare information systems for facilitating healthcare delivery.13 14 Besides these information systems that could help gathering, processing, storing and sharing data related to patient care,14 15 there are also registries that can help managing specific and extracted data mainly used by researchers and clinicians for outcome evaluation, patient follow-up and research.16 17 Information systems are regarded as information sources for an electronic health records system. This system only generates a summary of care data for different episode of care, while the detailed data are kept in the main information systems.18 19
Developing a well-designed CP information system integrated with other information systems requires applying the principles of information system architecture in practice.12 Information architecture, as a key aspect of information system architecture,20 21 is defined as a plan encompassing models, rules and policies that draw various data and are in charge of their collection, storage and retrieval, while also using and exchanging them across systems.22 With respect to CP information system, the information architecture provides a general view of the information that should exist in the system and can create a concrete foundation for data acquisition and sharing23 involving different groups including neurologists, neurosurgeons, occupational therapists and physiotherapists.17
Given the high prevalence of CP and the direct and indirect costs imposed on the healthcare system and society, the development of information architecture and its components such as databases and patient registry is essential for the proper management of costs, provision of services and treatment of patients with CP. Consequently, this study aimed to obtain a better understanding of CP information system and to determine the information architecture requirements, including organisations involved in data management, data sources and data bases, data elements, data standards, data sharing and data quality measures.