Discussion
This study reinforces the modern day relevance of the best practice principles in CDS design to CDS for chronic medications in primary care and the need to apply these principles to realise the benefits of CDS, which are pervasive in healthcare, yet do not currently produce consistently positive outcomes. We identified four main categories of CDS features for chronic medication management that clinicians find beneficial: clinically relevant and customisable, presentation of pertinent information and optimisation of workflow. These categories of features align with the best practices in CDS design and highlight aspects that clinicians perceive to be more or less beneficial, which should be prioritised when designing and implementing future CDS for chronic medications in primary care.
Interestingly, focus group participants expressed strong dislike for interruptive CDS alerts during the open group discussion, which was the most common CDS suggested when individuals were asked to design the ideal CDS. This discrepancy may be due to effects of peer influence during the group discussion or realisation that interruptive alerts were helpful when designed well and that non-interruptive alerts are more likely to be overlooked or ignored. The discussion of whether the alerts should be interruptive or not aligns with literature supporting improved use and effectiveness of interruptive CDS16 22 34 35 and non-interruptive CDS being less likely to be viewed and therefore less likely to be effective.16 22 24 36 37 However, whether an alert is interruptive or not is only one feature of CDS and as the focus group conversation progressed, clinicians discussed other features of CDS that would improve usefulness of an interruptive alert, such as timing of the alert and the ability to customise the alert. These features may have led individual clinicians to favour interruptive alerts if the design incorporated these features. Although not explicitly discussed during the focus groups, the sentiment regarding passive versus active CDS highlights the importance of potentially reserving active CDS for high priority or high-risk patient care situations13 38–40 and carefully designing active CDS such that the other features are optimised to minimise clinician frustrations.
Although there was no consensus in the timing of alerts, the discussion supports efforts to accommodate variations in individual clinician workflow and to personalise CDS to clinical workflows. However, to date, CDS have not been personalised to individual workflows, given the complexity required to account for the highly variable clinical workflows. Future research is needed to evaluate feasibility of such personalisation to workflows. For non-interruptive alerts, personalisation could include designing the CDS such that clinicians can access the information in the alert at a variety of different time points (eg, before entering the patient chart and/or on order entry and/or when signing a note), whereas such an approach with interruptive alerts would increase the frequency of interruptions and augment alert fatigue. Thus, for interruptive alerts, individualised personalisation of the alert timing by the clinician to meet their workflow needs would be the ideal state, but has not been realised yet. The ideal timing of passive or active CDS facilitates clinicians using the CDS without them noticing it, which can be challenging to accomplish in many situations, but nonetheless should be the goal in CDS design. Often personalisation is limited by technical constraints of the CDS software or EHR, which is continually evolving and may be less of a barrier with time and creative solutions.
To improve relevance and optimise their workflow, clinicians want CDS to be smarter, synthesising and presenting pertinent patient-specific information, with actionable recommendations that generates automated text in their clinical documentation and patient instructions. These findings are consistent with published recommendations on the ‘grand challenges’ that must be overcome for CDS to reach their potential and positively impact healthcare.39 Summarising pertinent information such as labs, vitals and allergies makes it easier for clinicians to quickly evaluate the appropriateness of a CDS recommendation and actionable links, such as ordering medications or labs, makes it easy to take action immediately. Further, the ability to populate clinical documentation and patient instructions with the plan would decrease duplicate work. Clinicians were specifically interested in auto-population of patient instructions to include titration schedules, timing of lab monitoring and pertinent adverse effects. Although not specifically mentioned in the focus groups, the clinical documentation could include routine monitoring that would assist in planning follow-up care. Some clinicians also expressed interest in presenting medication cost information with CDS recommendations. Although there are efforts to integrate medication costs into EHRs and CDS,41 there is currently no published literature describing the efficacy of such efforts. However, in other situations, such as ordering laboratory tests, clinicians did change ordering behaviour when informed of associated costs,42–45 suggesting the same may be true with medication ordering.
Another desired feature of the CDS was flexibility in response options, which is aligned with best practice principles in user-interface design. At times, clinicians felt forced to answer in a way not aligned with their intentions or the clinical scenario and wanted the option to better explain their actions in the form of free text that could be viewed later to trigger recall of their decisions. They also strongly wanted the option to permanently disable or temporarily dismiss CDS to alert at a more opportune time of their choosing. Clinicians who believed CDS would improve usefulness felt the ability to customise the CDS to the clinical scenario and individual workflow was very important. Principles of user-interface design includes ensuring clear and actionable response options,13 but flexibility in options is not well emphasised in the literature and can be critical to support the often nuanced clinical scenarios.
Clinicians had some concerns about unintended consequences, especially related to alert fatigue, mindlessly following CDS and inaccurate or incomplete information being presented by CDS. To avoid these problems, clinicians suggested implementing systematic processes for evaluation of CDS and inclusion of optional information and references. While inclusion of references in CDS are key to building trust, there are many additional strategies recommended to cultivate trust.13 Prioritising CDS recommendations according to specificity, urgency and relevance minimises obtrusiveness and increases trust.13 As CDS becomes increasingly pervasive in healthcare and we drive towards a Learning Health System, provision of a rationale with an assessment of the certainty or quality of the recommendation is important to engender trust.46 Further, as CDS are modified in response to clinician feedback, it is important to monitor for unintended consequences. For example, converting all CDS to be passive or giving clinicians the ability to permanently ‘snooze’ all CDS could result in missed opportunities to optimise evidence-based care for patients.
The findings of this study are limited by generalisability, given that participants represent clinicians at a single large academic medical centre using one integrated EHR platform for over 5 years and are exposed routinely to CDS. The results may be less representative of clinicians with less experience using an EHR and CDS, or using a different EHR platform, despite conversations focusing on broad concepts related to CDS that were not specific to an individual EHR. Further, participants represent a convenience sample based on ongoing professional relationships with the study investigators, thus introducing selection bias. However, a notable strength is that participants represent a variety of disciplines across outpatient practice settings and various expertise, with varying degrees of clinical practice responsibilities.
Clinicians characterised CDS for chronic medications as beneficial when it is clinically relevant and customisable, presents pertinent clinical information (eg, labs, vitals) and optimises workflow. Although clinicians preferred passive, non-interruptive alerts, most acknowledged that these may not be widely seen and may be less effective. The design features align with literature describing best practices in CDS design and emphasise features that primary care providers prioritise when using CDS for chronic medication use. Despite awareness of these best practices in CDS design, many CDS are not designed with application of these best practices, which is thought to be one reason for the mixed outcomes of CDS to date.14 19 47 48 This study reinforces the modern day relevance of the best practice principles in CDS design to CDS for chronic medications in primary care. When designing CDS for chronic medications in primary care, developers should consider these user-centred design features and continually re-evaluate CDS design as technical capabilities of CDS and EHRs become more sophisticated.