INTRODUCTION
Patient safety has become an integral part of quality management in healthcare systems worldwide. While patient safety research has traditionally focused on secondary care,1–3 primary care, as the cornerstone of modern healthcare systems,4 is increasingly recognised as an area where major improvements in patient safety can be achieved,5,6 especially due to the large numbers of medications that are prescribed on a daily basis.7 It has been shown that one in 20 prescriptions in primary care contain errors, and one in 550 contain potentially life threatening errors.7 One in 25 hospital admissions are the result of prescribing errors in primary care,8 and adverse drug reactions, of which most are avoidable, cost the NHS an estimated £500 million per year.9
The potential for Information Technology (IT) systems to improve safety within healthcare is large and well documented.10,11 For prescribing safety, there are examples where IT systems have had positive12 and negative13,14 effects. IT-based interventions for improving prescribing safety fall broadly into two categories: clinical decision support (CDS) and electronic audit and feedback (eA&F). CDS systems, such as pop-up alerts, attempt to influence behaviour at the point of care and while some studies have shown benefits,15 others have shown that clinicians can suffer from ‘alert fatigue’ where poorly targeted alerts lead to their routine dismissal.16,17 eA&F systems, such as dashboards, provide feedback away from the point of care, usually at a population level, to allow for clinicians to review, and potentially change, their practice retrospectively.18 A systematic review of eA&F systems found a wide degree of heterogeneity in both the identified studies and their effects.19 Another literature review, specifically focusing on dashboards, had similar findings and called for more research to be undertaken to help influence the design of such systems.20 Despite the widespread usage of such dashboards, there exists little evidence as to what factors contribute to their success or failure.21
A common limitation of both types of intervention is that they often only indicate problems, without necessarily providing solutions. Even when specific actions are recommended, clinicians do not necessarily have the time or skills to act appropriately.22 The University of Nottingham, therefore, developed the pharmacist-led information technology intervention for reducing medication errors (PINCER) in primary care. The PINCER intervention is based on computer-generated feedback that identifies patients for whom potentially hazardous prescribing practices are present, but crucially adds educational outreach visits by trained pharmacists23 to general practices where they work with the local staff to resolve any confirmed hazardous prescribing incidents and to prevent their reoccurrence. The intervention was shown to be more effective at reducing numbers of at-risk patients than computer-generated feedback alone24; proving the pharmacist visit plays a crucial role in effectively solving prescribing errors. It was also shown to be likely (59% chance) cost-effective in reducing prescription errors.24,25
There are indications that the reduction in risk due to PINCER is only temporary because it does not always reduce the incident erroneous prescribing behaviour.24 This is in part because the PINCER feedback mechanism relies on snapshots of data extracted from the electronic health record (EHR) database, while feedback is known to be more effective when it is provided more than once.26 Therefore, we aimed to build upon PINCER in order to create a continuous feedback loop for cycles of quality improvement. Our objectives were to develop an application that identifies patients exposed to potentially hazardous prescribing to end users and is updated on a daily basis, and roll out the system across Salford, UK, where our previous research has shown the prevalence of potentially hazardous prescribing is greater than 5%.27