BACKGROUND
For many years, government, community, administrative and political organizations have tried to understand the relationships that exist between geography and health.1 Epidemiology, in particular the study of determining factors and distribution of health-related states,2 is a major component of research in health geography, public health and medical informatics. Until the development of geographic information systems (GIS), health and geography were studied using classic maps and health reports, or lack thereof.3 While GIS can benefit the study of public health and geography, it has its downfalls. The purpose of this literature review is to understand the benefits and drawbacks of GIS and how they can be applied to public health informatics, medical informatics and epidemiology.
A geographical information system (GIS) is defined as ‘a computer-based system for collecting, editing, integrating, visualizing and analysing spatially-referenced data’.4 They contain the spatial dimensions of specific geographic areas.3 This allows for mapping and analysis of spatial information to occur and be applied in business, market research, government, etc. Health GISs are integrated systems containing tools for managing, inquiring, analysing and presenting spatially-referenced health data.5
GIS databases are comprised of both spatial and non-spatial data to allow for a greater understanding of their relationships through a series of thematic features in geography.6 Non-spatial data (also called attribute or characteristic data) are that information that is independent of geometric considerations. For example, a person’s height, mass and age are non-spatial data because they are independent of a person’s location. However, weight is spatial data in the sense that weight of something depends on its location. Spatial data define precise geographical locations. Using GIS converts street addresses and coordinates to a specific point on a map.6 Spatial data include spatial relationships. For example, the arrangement of houses on a street is also spatial data.
Once these systems are ready to use in research, one may use them to assess illness and health care services to treat and prevent the reoccurrence of health issues.5 Because GIS contain health and illness information for specific regions as well as various forms of environmental data, connections between a population’s living area and their state of well-being can be made in a more informed and in-depth manner compared to the use of traditional paper-based maps. As a result, GIS in health studies can improve the quantity and quality of epidemiological research in addition to health care delivery and accessibility as conclusions can be made about a region’s care, services, and overall health. Other applications of GIS in public health informatics include efficient planning of health services, better access, logistics and identification of problem areas.5
Two examples of GIS in today’s society include Google Maps and Google Earth.7 While they are not necessarily official GIS for research and academics, they can still be useful. Bowman et al.7 reported that Google Maps and Google Earth can help physicians to get a picture of where their patients live, especially when a doctor may be moving to a new community to practice. While these activities may not be health informatics research in and of themselves, they can still be valuable in medicine. For example, there is no point for a doctor in northern rural Canada in relying on the plethora of subspecialties available to them through a major urban centre when the community they are joining are limited to ice roads as the only point of access for much of the year. More examples of GIS used in health have included examining the relationship between health outcomes for people with diabetes and their physicians’ use of diabetic medical information.8 GIS can also be implemented in medical program evaluation to ensure that medical students are experiencing realistic rural and semi-rural placements based on thematic mapping of geographical characteristics of rural communities.9 Further, one can compare whether or not the same health intervention program is more effective in different geographical areas of the same metropolis. For example, a heart rehab program may be extremely effective in an area where walkability scores are very low and one would expect the opposite to happen. Instead, due to low levels of access to walkable outdoor space, the program is run in an indoor gym and accessible all year round.
While there are improvements that can still be made in GIS, they can still be extremely useful in the study of environmental epidemiology.10 Mapping through GIS can make substantial gains in the evaluation of environmental health risks.11 GIS research needs to evolve more although its integration into public health has transitioned beyond its early stages into more efficient and practical uses.12 For example, specific homes with high rates of lead poisoning or other harmful chemicals can be mapped through GIS and then interventions may be implemented to reduce and/or remove such hazards from those specific homes.12 In that sense, researchers are not just making observations with GIS anymore, they are taking those observations and integrating them into action plans to make populations healthier. Nykiforuk and Flaman13 identified the four main uses of GIS in health informatics such as disease surveillance, health risk analysis, health access and planning and community health profiling.
Disease surveillance
Disease surveillance is ‘the compilation and tracking of data on the incidence, prevalence and spread of disease’.14 Its main constituents are disease mapping and disease modelling. This helps us understand where disease and illness spread and how they may be minimized or stopped.14 As a result, mapping and modelling in disease surveillance are systematic methods linking data on diseases with influencing environmental features.
Risk analysis
Risk analysis is defined as the assessment, management, communication and monitoring of health impacts.14 This can be seen through studies such as one example which mapped and correlated major stationary sources of air pollution in relation to minority populations in New York City.15 This showed that minority populations in Bronx were significantly more likely to be exposed to air pollution and therefore had an increased risk of respiratory diseases.
Health access and planning
One of the most widely practiced applications of GIS in medical informatics is studying a community’s access to health care. Access to health care describes a population’s capability to use health services when needed.16 We can identify relationships between different variables associated with the need for health services and how they are implemented.
For example, GIS has been used to assess populations in Central and South America that need access to anti-venom treatment sites for snakebites.17 Another area for GIS includes the examination of maternity care access.18 Even though these two topics are very different in the area of medicine that they examine, they both utilize GIS to support decision making regarding the provision of access to vital health care.19
Community health profiling
The final health category where GIS is implemented includes community health profiling. This is known as ‘the compilation and mapping of information regarding the health of a population in a community’.13 Profiling can be used to identify the geographical strengths and weaknesses of a specific community to make decisions about their health services to justify the placement of new ones.20 For example, areas without access to greenspace may require more of an exercise on prescription approach to get patients active and engaged in a local gym as there is no park space safely available to them for walking. As such, community health profiling can help us understand the linkages between people and their environments to ensure that the health needs of different communities are met.21