DISCUSSION
The average biennial cervical cancer screening rate in NSW for the 2009–2010 reporting period is 56.5%,7 with reportedly lower participation rates in rural and remote communities.8 The local health district is reported to have a significantly lower biennial screening rate [54.0 with 95% CI (53.6–54.4)] than the state average.
It was anticipated that the use of a DET would allow for rapid assessment of the cervical cancer screening rates in the practices and accurately reflect the participation rate in cervical screening. Such information would be useful in the effort to increase the rate of women following the current recommendation to undergo screening biennially. However, the DET failed to report accurate results, significantly underestimating the true level of cervical screening (X2=23.24, p=0.001).
One problem associated with using DETs may be the inability to archive information that is no longer relevant, for example woman who have left the practice. Essentially, data need to be accurate and complete, in addition to being entered in the correct field within the clinical software9 and in a format useable by the DET.
Of those patients identified by the DET as not having had a Pap smear, seven of 100 random patients had actually had a Pap smear. Three patients had phone/specialist records of Pap smears conducted elsewhere, which may account for the failure of the DET to pick up these results. Although not directly a problem of the DET, this does limit its usefulness in clinical practice, highlighting the importance of complete/accurate clinical data. The audit failed to identify a reason for why the other four patients were not identified.
The tool extracts data from two sources. There is a manual entry field called ‘Last Pap Date’, in addition to atomized pathology data that are extracted. The atomized pathology data are limited to test names that have been entered into the program. Pap smear results do not auto-populate in many clinical software programs and manual entry is time consuming and can be open to error.10 If these data are not entered manually, Pap smear rates determined via DETs will be underestimated.10
This appears to be a more significant problem with Pap smear data than other pathology tests, and accuracy of general practice records in terms of Pap smears has been previously questioned. Laurence et al.11 found that the cervical screening rate determined using only immediately available electronic medical records (EMRs) indicated a low screening rate in participating practices (45%). However, telephone follow-up and adjustments to the denominator indicated that the rate was 86%. In the current study, the DET identified that 13.3% of women in the practice had had a Pap smear within the previous two years; however, available Practice Incentives Program data stated that 63.5% of whole patient equivalents at this practice had claimed the Medicare item number for a Pap smear during the same reporting period. This is 50% points greater than the rate reported by the DET, highlighting the current limitation of the tool.
Schattner et al.12 suggest that there is a need to improve eHealth data transmission to increase accessibility of clinical data by DETs for Pap smear results, in addition to improving the functionality of DETs themselves.
Increasingly, DETs are being used for research and audit of general practice. A role for DETs has been suggested for gathering such diverse information from electronic patient databases as patient demographics, disease and risk factor profiles, immunisation rates and cancer surveillance.13 However, examples of their use often make no comment about the accuracy of the tools in terms of extracting clinical data despite the recognised limitations of using DETs.13–16